Induction Heat Treatment of a Tantalum-Containing Coating Produced on Commercial Titanium by Electrospark Alloying

  • Марина [Marina] Алексеевна [A.] Фомина [Fomina]
  • Владимир [Vladimir] Александрович [A.] Кошуро [Koshuro]
  • Александр [Aleksandr] Александрович [A.] Фомин [Fomin]
Keywords: titanium, tantalum-containing coating, electrospark deposition, induction-heat treatment, superhard coating

Abstract

Tantalum-containing coatings were made on commercial titanium samples by electrospark alloying at a direct current (DC-mode) of 5 A (±2%), a pulse duration of 100 ms (with an amplitude of not more than 0.2 mm) and a single pulse energy of 7.5– 8.0 J. As a result, layers with a thickness of 25–40 μm were produced. Induction heat treatment of titanium bases with coatings was carried out in air at an inductor current of 2.0–3.2 kA and consumed power of 0.16–0.29 kW, with which the experimental samples were heated to 780–1150 °C. The exposure time was 30 and 120 s. Thermal modification at temperatures of 780–800 and 1000–1150 °C caused the surface open porosity to decrease from 51 to 42%. Induction treatment made it possible to produce nanosized grains and pores on the surface of tantalum-containing layers with the average size DG = 30 ± 5 nm and DP = 80 ± 16 nm, respectively. The size of structural elements depended on the thermal modification temperature and duration. The initial electrospark coatings were characterized by the presence of tantalum (1.38±0.27 at. %), nitrogen (7.40±5.17 at. %), oxygen (33.99±12.44 at. %), and titanium (57.23±7.68 at. %). As a result of induction heat treatment, nitrogen was removed from the electrospark layers, and the oxygen content was increased to 67.20 ± 2.60 at. % with, probably, the formation of tantalum monoxides and pentoxides. The microhardness of the initial tantalum coatings was H = 20.48 ± 6.22 GPa. Low-temperature treatment contributed to an increase in the surface microhardness to H = 25–34 GPa. At temperature T = 950–970°C, the microhardness of the Ti–Ta–O surface reached a maximum at about H = 48–60 GPa, which corresponds to the level of superhard materials. The thermally treated coatings were characterized by a uniform distribution of hardness over the cross section. The surface hardness value decreased gradually to the coating–metal boundary and further down to 25-40 mm to inside of the titanium. At a depth of 100–120 µm from the surface, the hardness reached values corresponding to the initial titanium. On the basis of the data obtained, regression models have been constructed, which describe the effect of temperature and treatment duration on the surface microhardness of the produced layers, as well as the tantalum content.

Information about authors

Марина [Marina] Алексеевна [A.] Фомина [Fomina]

Ph.D.-student of Materials Science and Biomedical Engineering Dept., Researcher at the Electrophysical Processes and Technologies Laboratory, Saratov State Technical University named after Yuri Gagarin, e-mail: lab-sm@mail.ru

Владимир [Vladimir] Александрович [A.] Кошуро [Koshuro]

Ph.D. (Techn.), Assistant Professor of Materials Science and Biomedical Engineering Dept., Senior Researcher at the Electrophysical Processes and Technologies Laboratory, Saratov State Technical University named after Yuri Gagarin, e-mail: dimirion@mail.ru

Александр [Aleksandr] Александрович [A.] Фомин [Fomin]

Dr.Sci. (Techn.), Assistant Professor, Head of Materials Science and Biomedical Engineering Dept., Chief Scientific Officer at the Electrophysical Processes and Technologies Laboratory, Saratov State Technical University named after Yuri Gagarin, e-mail: fominaa@sstu.ru

References

1. Омарова Д.К. Применение тантала и производство мировой танталовой продукции (обзор) // Бюллетень Восточно-Сибирского научного центра Сибирского отделения Российской академии медицинских наук. 2012. № 1. С. 143—148.
2. Konttinen Y.T. e. a. 6 — Metals for Joint Replacement. Cambridge: Woodhead Publishing, Woodhead Publ. Series in Biomaterials, Joint Replacement Technol., 2008. Pp. 115—162.
3. Махонин В.Р. Разработка и применение пористых танталовых трабекулярных металлических имплантатов // Центральный научный вестник. 2018. Т. 3. № 9. С. 25—27.
4. Balla V.K., Bodhak S., Bose S., Bandyopadhyay A. Porous Tantalum Structures for Bone Implants: Fabrication, Mechanical and in Vitro Biological Properties // Acta Biomaterialia. 2010. V. 6. No. 8. Pp. 3349—3359.
5. Bobyn J.D., Stackpool G.J., Hacking S.A., Tanzer M., Krygier J.J. Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial // J. Bone and Joint Surgery. British Volume. 1999. V. 81-B. No. 5. Pp. 907—914.
6. Yang H., Li J., Zhou Z., Ruan J. Structural Preparation and Biocompatibility Evaluation of Highly Porous Tantalum Scaffolds // Materials Letters. 2013. V. 100. Pp. 152—155.
7. Филиппенко В.А., Танькут В.А., Жигун А.И., Аконджом М., Бондаренко С.Е. Результаты клинического применения ацетабулярных компонентов с поверхностью из пористого тантала в эндопротезах при дефектах стенок вертлужной впадины и остеопорозе // Травма. 2016. Т. 17. № 1. С. 19—23.
8. Алонцева Д.Л., Хожанов А.Р., Герт С.С., Садибеков А.Б., Калюжный С.Н. Роботизированное микроплазменное напыление функциональных покрытий из тантала на титановые имплантаты // Вестник Восточно-Казахстанского гос. техн. ун-та им. Д. Серикбаева. 2020. № 3. С. 55—60.
9. Гончаров О.Ю., Файзуллин Р.Р., Гуськов В.Н., Балдаев Л.Х. Термодинамический анализ химического газофазного осаждения Та восстановлением галогенидов тантала кадмием и цинком // Неорганические материалы. 2015. Т. 51. № 6. С. 655—655.
10. Li X., Wang L., Yu X., Feng Y., Wang C., Yang K., Su D. Tantalum Coating on Porous Ti6Al4V Scaffold Using Chemical Vapor Deposition and Preliminary Biological Evaluation // Materials Sci. and Eng. C. 2013. V. 33. No. 5. Pp. 2987—2994.
11. Лузанов В.А. и др. Получение тонких пленок тантала с использованием метода магнетронного распыления // Радиотехника и электроника. 2015. Т. 60. № 12. С. 1251—1253.
12. Yanson K.A., Bite G.R., Knets I.V., Saulgozis Y.Z. Hardness of the Human Tibia // Polymer Mechanics. 1973. V. 9. No. 6. Pp. 966—971.
13. Du S. e. a. Optimizing the Tribological Behavior of Tantalum Carbide Coating for the Bearing in Total Hip Joint Replacement // Vacuum. 2018. V. 150. Pp. 222—231.
14. Du S. e. a. N Dependent Tribochemistry: Achieving Superhard Wear-resistant Low-friction TaCxNy Films // Surface and Coatings Technol. 2017. V. 328. Pp. 378—389.
15. Ren P. e. a. Self-assembly of TaC@Ta Core–shell-like Nanocomposite Film via Solid-state Dewetting: Toward Superior Wear and Corrosion Resistance // Acta Materialia. 2018. V. 160. Pp. 72—84.
16. Sun Y.S., Chang J.H., Huang H.H. Corrosion Resistance and Biocompatibility of Titanium Surface Coated with Amorphous Tantalum Pentoxide // Thin Solid Films. 2013. V. 528. Pp. 130—135.
17. Hertl C., Koll L., Schmitz T., Werner E., Gbureck U. Structural Characterisation of Oxygen Diffusion Hardened Alpha-tantalum PVD-coatings on Titanium // Materials Sci. and Engineering: C. 2014. V. 41. Pp. 28—35.
18. Rahmati B. e. a. Development of Tantalum Oxide (Ta-O) Thin Film Coating on Biomedical Ti-6Al-4V Alloy to Enhance Mechanical Properties and Biocompatibility // Ceramics Intern. 2016. V. 42. No. 1. Pp. 466—480.
19. Sheveyko A.N. e. a. Structural Transformations in TiC-CaO-Ti3PO(x)-(Ag2Ca) Electrodes and Biocompatible TiCaPCO(N)-(Ag) Coatings During Pulsed Electrospark Deposition // Surface and Coatings Technol. 2016. V. 302. Pp. 327—335.
20. Potanin A.Y. e. a. The Features of Combustion and Structure Formation of Ceramic Materials in the TiC–Ti3POx–CaO system // Ceramics Intern. 2015. V. 41. No. 6. Pp. 8177—8185.
21. Корешков А.В., Денисов Л.В., Бойцов А.Г. Нанесение антифрикционных и износостойких многокомпонентных покрытий на титановые сплавы электроискровым легированием // Современные материалы, техника и технологии. 2018. № 6(21). С. 99—106.
22. Вдовин С.Ф., Решетников С.М. Влияние электроискрового легирования и последующего отжига на повышение жаростойкости конструкционных металлических материалов // Защита металлов. 2000. Т. 36. № 3. С. 325—327.
23. Войко А.В., Фомин А.А. Исследование влияния геометрических параметров и тока индуктора на процесс цементации титана в контейнере с углеродосодержащей средой // Вопросы электротехнологии. 2021. № 1. С. 71—78.
24. Палканов П.А., Кошуро В.А., Фомин А.А. Влияние технологических параметров индукционного азотирования инструментальной стали Р6М5 на микротвердость и толщину диффузионного слоя // Вестник МЭИ. 2022. № 2. С. 95—104.
25. Fomina M. e. a. Functionally Graded «Ti-base+(Ta, Ta2O5)-coatings» Structure and its Production Using Induction Heat Treatment // Composite Structures. 2020. V. 234. P. 111688.
26. Koshuro V., Fomina M., Fomin A., Rodionov I. Metal Oxide (Ti,Ta)-(TiO2,TaO) Coatings Produced on Titanium Using Electrospark Alloying and Modified by Induction Heat Treatment // Composite Structures. 2018. V. 196. Pp. 1—7.
27. Fomina M., Koshuro V., Papshev V., Rodionov I., Fomin A. Surface Morphology Data of Tantalum Coatings Obtained by Electrospark Alloying // Data in Brief. 2018. V. 20. Pp. 1409—1414.
28. Hasanabadi M.F., Ghaini F.M., Ebrahimnia M., Shahverdi H.R. Production of Amorphous and Nanocrystalline Iron Based Coatings by Electro-spark Deposition Process // Surface and Coatings Technol. 2015. V. 270. Pp. 95—101.
29. Burstein G.T., Souto R.M. Observations of Localised Instability of Passive Titanium in Chloride Solution // Electrochimica Acta. 1995. V. 40. No. 12. Pp. 1881—1888.
30. Souto B.M., Burstein G.T. A Preliminary Investigation Into the Microscopic Depassivation of Passive Titanium Implant Materials in Vitro // J. Materials Sci.: Materials in Medicine. 1996. V. 7. Pp. 337—343.
31. Contu F., Elsener B., Böhni H. A Study of the Potentials Achieved During Mechanical Abrasion and the Repassivation Rate of Titanium and Ti6Al4V in Inorganic Buffer Solutions and Bovine Serum // Electrochimica Acta. 2004. V. 50. No. 1. Pp. 33—41.
32. Wang J.L., Liu R.L., Majumdar T., Mantri S.A., Ravi V.A., Banerjee R., Birbilis N. A Closer Look at the in Vitro Electrochemical Characterisation of Titanium Alloys for Biomedical Applications Using In-situ Methods // Acta Biomaterialia. 2017. V. 54. Pp. 469—478.
33. Fomin A.A., Rodionov I.V. Chemical Composition, Structure, and Properties of the Surface of Titanium VT1-00 and Its Alloy VT16 After Induction Heat Treatment // Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Oxford: Butterworth-Heinemann, 2015. Pp. 403—424.
---
Для цитирования: Фомина М.А., Кошуро В.А., Фомин А.А. Индукционно-термическая обработка танталосодержащего покрытия, сформированного на техническом титане электроискровым легированием // Вестник МЭИ. 2023. № 5. С. 35—47. DOI: 10.24160/1993-6982-2023-5-35-47
---
Работа выполнена при поддержке: Российского научного фонда (грант № 18-79-10040), https://rscf.ru/project/18- 79-10040/
#
1. Omarova D.K. Primenenie Tantala i Proizvodstvo Mirovoy Tantalovoy Produktsii (Obzor). Byulleten' Vostochno-Sibirskogo Nauchnogo Tsentra Sibirskogo Otdeleniya Rossiyskoy Akademii Meditsinskikh Nauk. 2012;1:143—148. (in Russian).
2. Konttinen Y.T. e. a. 6 — Metals for Joint Replacement. Cambridge: Woodhead Publishing, Woodhead Publ. Series in Biomaterials, Joint Replacement Technol., 2008:115—162.
3. Makhonin V.R. Razrabotka i Primenenie Poristykh Tantalovykh Trabekulyarnykh Metallicheskikh Implantatov. Tsentral'nyy Nauchnyy Vestnik. 2018;3;9:25—27. (in Russian).
4. Balla V.K., Bodhak S., Bose S., Bandyopadhyay A. Porous Tantalum Structures for Bone Implants: Fabrication, Mechanical and in Vitro Biological Properties. Acta Biomaterialia. 2010;6;8:3349—3359.
5. Bobyn J.D., Stackpool G.J., Hacking S.A., Tanzer M., Krygier J.J. Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial. J. Bone and Joint Surgery. British Volume. 1999;81-B;5:907—914.
6. Yang H., Li J., Zhou Z., Ruan J. Structural Preparation and Biocompatibility Evaluation of Highly Porous Tantalum Scaffolds. Materials Letters. 2013;100:152—155.
7. Filippenko V.A., Tan'kut V.A., Zhigun A.I., Akondzhom M., Bondarenko S.E. Rezul'taty Klinicheskogo Primeneniya Atsetabulyarnykh Komponentov s Poverkhnost'yu iz Poristogo Tantala v Endoprotezakh pri Defektakh Stenok Vertluzhnoy Vpadiny i Osteoporoze. Travma. 2016;17;1:19—23. (in Russian).
8. Alontseva D.L., Khozhanov A.R., Gert S.S., Sadibekov A.B., Kalyuzhnyy S.N. Robotizirovannoe Mikroplazmennoe Napylenie Funktsional'nykh Pokrytiy iz Tantala na Titanovye Implantaty. Vestnik Vostochno-Kazakhstanskogo Gos. Tekhn. Un-ta im. D. Serikbaeva. 2020;3:55—60. (in Russian).
9. Goncharov O.Yu., Fayzullin R.R., Gus'kov V.N., Baldaev L.Kh. Termodinamicheskiy Analiz Khimicheskogo Gazofaznogo Osazhdeniya Ta Vosstanovleniem Galogenidov Tantala Kadmiem i Tsinkom. Neorganicheskie Materialy. 2015;51;6:655—655. (in Russian).
10. Li X., Wang L., Yu X., Feng Y., Wang C., Yang K., Su D. Tantalum Coating on Porous Ti6Al4V Scaffold Using Chemical Vapor Deposition and Preliminary Biological Evaluation. Materials Sci. and Eng. C. 2013;33;5:2987—2994.
11. Luzanov V.A. i dr. Poluchenie Tonkikh Plenok Tantala s Ispol'zovaniem Metoda Magnetronnogo Raspyleniya. Radiotekhnika i Elektronika. 2015;60;12:1251—1253. (in Russian).
12. Yanson K.A., Bite G.R., Knets I.V., Saulgozis Y.Z. Hardness of the Human Tibia. Polymer Mechanics. 1973;9;6:966—971.
13. Du S. e. a. Optimizing the Tribological Behavior of Tantalum Carbide Coating for the Bearing in Total Hip Joint Replacement. Vacuum. 2018;150:222—231.
14. Du S. e. a. N Dependent Tribochemistry: Achieving Superhard Wear-resistant Low-friction TaCxNy Films. Surface and Coatings Technol. 2017;328:378—389.
15. Ren P. e. a. Self-assembly of TaC@Ta Core–shell-like Nanocomposite Film via Solid-state Dewetting: Toward Superior Wear and Corrosion Resistance. Acta Materialia. 2018;160:72—84.
16. Sun Y.S., Chang J.H., Huang H.H. Corrosion Resistance and Biocompatibility of Titanium Surface Coated with Amorphous Tantalum Pentoxide. Thin Solid Films. 2013;528:130—135.
17. Hertl C., Koll L., Schmitz T., Werner E., Gbureck U. Structural Characterisation of Oxygen Diffusion Hardened Alpha-tantalum PVD-coatings on Titanium. Materials Sci. and Engineering: C. 2014;41:28—35.
18. Rahmati B. e. a. Development of Tantalum Oxide (Ta-O) Thin Film Coating on Biomedical Ti-6Al-4V Alloy to Enhance Mechanical Properties and Biocompatibility. Ceramics Intern. 2016;42;1:466—480.
19. Sheveyko A.N. e. a. Structural Transformations in TiC-CaO-Ti3PO(x)-(Ag2Ca) Electrodes and Biocompatible TiCaPCO(N)-(Ag) Coatings During Pulsed Electrospark Deposition. Surface and Coatings Technol. 2016;302:327—335.
20. Potanin A.Y. e. a. The Features of Combustion and Structure Formation of Ceramic Materials in the TiC–Ti3POx–CaO system. Ceramics Intern. 2015;41;6:8177—8185.
21. Koreshkov A.V., Denisov L.V., Boytsov A.G. Nanesenie Antifriktsionnykh i Iznosostoykikh Mnogokomponentnykh Pokrytiy na Titanovye Splavy Elektroiskrovym Legirovaniem. Sovremennye Materialy, Tekhnika i Tekhnologii. 2018;6(21):99—106. (in Russian).
22. Vdovin S.F., Reshetnikov S.M. Vliyanie Elektroiskrovogo Legirovaniya i Posleduyushchego Otzhiga na Povyshenie Zharostoykosti Konstruktsionnykh Metallicheskikh Materialov. Zashchita Metallov. 2000;36;3:325—327. (in Russian).
23. Voyko A.V., Fomin A.A. Issledovanie Vliyaniya Geometricheskikh Parametrov i Toka Induktora na Protsess Tsementatsii Titana v Konteynere s Uglerodosoderzhashchey Sredoy. Voprosy Elektrotekhnologii. 2021;1:71—78. (in Russian).
24. Palkanov P.A., Koshuro V.A., Fomin A.A. Vliyanie Tekhnologicheskikh Parametrov Induktsionnogo Azotirovaniya Instrumental'noy Stali R6M5 na Mikrotverdost' i Tolshchinu Diffuzionnogo Sloya. Vestnik MEI. 2022;2:95—104. (in Russian).
25. Fomina M. e. a. Functionally Graded «Ti-base+(Ta, Ta2O5)-coatings» Structure and its Production Using Induction Heat Treatment. Composite Structures. 2020;234:111688.
26. Koshuro V., Fomina M., Fomin A., Rodionov I. Metal Oxide (Ti,Ta)-(TiO2,TaO) Coatings Produced on Titanium Using Electrospark Alloying and Modified by Induction Heat Treatment. Composite Structures. 2018;196:1—7.
27. Fomina M., Koshuro V., Papshev V., Rodionov I., Fomin A. Surface Morphology Data of Tantalum Coatings Obtained by Electrospark Alloying. Data in Brief. 2018;20:1409—1414.
28. Hasanabadi M.F., Ghaini F.M., Ebrahimnia M., Shahverdi H.R. Production of Amorphous and Nanocrystalline Iron Based Coatings by Electro-spark Deposition Process. Surface and Coatings Technol. 2015;270:95—101.
29. Burstein G.T., Souto R.M. Observations of Localised Instability of Passive Titanium in Chloride Solution. Electrochimica Acta. 1995;40;12:1881—1888.
30. Souto B.M., Burstein G.T. A Preliminary Investigation Into the Microscopic Depassivation of Passive Titanium Implant Materials in Vitro. J. Materials Sci.: Materials in Medicine. 1996;7:337—343.
31. Contu F., Elsener B., Böhni H. A Study of the Potentials Achieved During Mechanical Abrasion and the Repassivation Rate of Titanium and Ti6Al4V in Inorganic Buffer Solutions and Bovine Serum. Electrochimica Acta. 2004;50;1:33—41.
32. Wang J.L., Liu R.L., Majumdar T., Mantri S.A., Ravi V.A., Banerjee R., Birbilis N. A Closer Look at the in Vitro Electrochemical Characterisation of Titanium Alloys for Biomedical Applications Using In-situ Methods. Acta Biomaterialia. 2017;54:469—478.
33. Fomin A.A., Rodionov I.V. Chemical Composition, Structure, and Properties of the Surface of Titanium VT1-00 and Its Alloy VT16 After Induction Heat Treatment. Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Oxford: Butterworth-Heinemann, 2015:403—424
---
For citation: Fomina M.A., Koshuro V.A., Fomin A.A. Induction Heat Treatment of a Tantalum-Containing Coating Produced on Commercial Titanium by Electrospark Alloying. Bulletin of MPEI. 2023;5:35—47. (in Russian). DOI: 10.24160/1993-6982-2023-5-35-47
---
The work is executed at support: Russian Science Foundation (Grant No. 18-79-10040), https://rscf.ru/project/18-79-10040/
Published
2023-06-06
Section
Electrotechnology and Electrophysics (Technical Sciences) (2.4.4)