Hybrid Microgrid Control Using an Optimized Grid Supporting Controller

  • Хайдер Майтам [Haider М.] Джассим [Jassim]
  • Анатолий [Anatoliy] Михайлович [M.] Зюзев [Zyuzev]
  • Олег [Oleg] Викторович [V.] Крюков [Kryukov]
Keywords: hybrid microgrid, bidirectional power converter, control of operating parameters and frequency, distributed generation

Abstract

The integration of various distributed energy sources into a power system requires special grid topology and control system structure. The power system considered is a hybrid microgrid comprising DC and AC subsystems with a possibility to control the generation and load in both subsystems. To achieve the required microgrid performance characteristics, it is proposed to use a frequency adjusting controller with optimized parameters, which maintains the electric operation modes in both subsystems with the preset droop. The controller is connected to a bidirectional converter that controls the redistribution of power between the grid AC and DC sides. In addition, for islanding the DC subsystem for isolated operation, an appropriate function has been implemented at the microgrid control system upper level. The islanding of the DC system for isolated operation is necessary to prevent the storage batteries from becoming discharged and to protect the critical loads on the DC side. Owing to the proposed microgrid control algorithm implemented in the controller, stability of the AC subsystem is maintained during its joint operation with the DC subsystem. The operation modes with islanding the DC subsystem for isolated operation have been analyzed, and the effectiveness of the proposed control system has been evaluated.

Information about authors

Хайдер Майтам [Haider М.] Джассим [Jassim]

Ph.D.-student of Electric Drive and Power Plant Automation Dept., Ural Power Institute, Ural Federal University, Yekaterinburg, e-mail: khdzhassim@urfu.ru

Анатолий [Anatoliy] Михайлович [M.] Зюзев [Zyuzev]

Dr.Sci. (Techn.), Professor of Electric Drive and Power Plant Automation Dept., Ural Power Institute, Ural Federal University, Yekaterinburg, e-mail: a.m.zyuzev@urfu.ru

Олег [Oleg] Викторович [V.] Крюков [Kryukov]

Dr.Sci. (Techn.), Deputy Director for Science LLC «TCN-Electro», Nizhniy Novgorod, e-mail: o.v.kryukov@mail.ru

References

1. Yang P. e. a. Decentralized Economic Operation Control for Hybrid AC/DC Microgrid // IEEE Trans. Sustain. Energy. 2019. V. 11. No. 3. Pp. 1898—1910.
2. Narsardin M.A.M. Voltage Tracking of a DC-DC Buck Converter Using Neural Network Control. Batu Pahat: Universiti Tun Hussein Onn Malaysia, 2012.
3. Ding G. e. a. Control of Hybrid AC/DC Microgrid Under Islanding Operational Conditions // J. Mod. Power Syst. Clean Energy. 2014. V. 2. No. 3. Pp. 223—232.
4. Tlili F., Kadri A., Bacha F. Advanced Control Strategy for Bidirectional Three Phase AC/DC Converter // Electr. Power Syst. Res. 2020. V. 179. P. 106078.
5. Zhong Q.-C., Konstantopoulos G.C. Current-limiting Droop Control of Grid-connected Inverters // IEEE Trans. Ind. Electron. 2016. V. 64. No. 7. Pp. 5963—5973.
6. Li P. e. a. An Adaptive Coordinated Optimal Control Method for Parallel Bidirectional Power Converters in AC/DC Hybrid Microgrid // Int. J. Electr. Power Energy Syst. 2021. V. 126. P. 106596.
7. Ren C. e. a. Multi-mode Control for Three-phase Bidirectional AC/DC Converter in Hybrid Microgrid Under Unbalanced AC Voltage Conditions // Proc. Energy Conversion Congress and Exposition. 2019. Pp. 2658—2663.
8. Wu H. e. a. Control and Modulation of Bidirectional Single-phase AC–DC Three-phase-leg SPWM Converters with Active Power Decoupling and Minimal Storage Capacitance // IEEE Trans. Power Electron. 2015. V. 31. No. 6. Pp. 4226—4240.
9. Ma T., Cintuglu M.H., Mohammed O.A. Control of a Hybrid AC/DC Microgrid Involving Energy Storage and Pulsed Loads // IEEE Trans. Ind. Appl. 2016. V. 53. No. 1. Pp. 567—575.
10. Shang L., Guo H., Zhu W. An Improved MPPT Control Strategy Based on Incremental Conductance Algorithm // Prot. Control Mod. Power Syst. 2020. V. 5. No. 1. Pp. 1—8.
11. Jassim H.M., Ziuzev A. Optimized-fuzzy Droop Controller for Load Frequency Control of a Microgrid with Weak Grid Connection and Disturbances // Proc. 29th Intern. Workshop on Electric Drives: Advances in Power Electronics for Electric Drives. 2022. Pp. 1—7.
12. Åström K.J., Hägglund T. PID Control. Instrument Soc. America, 1995.
13. Lin Y. e. a. Research Roadmap on Grid-forming Inverters. Golden: National Renewable Energy Lab., 2020.
14. Zhan Z.-H. e. a. Adaptive Particle Swarm Optimization // IEEE Trans. Syst. Man, Cybern. Part B. 2009. V. 39. No. 6. Pp. 1362—1381.
15. Barisal A.K., Mishra S. Improved PSO Based Automatic Generation Control of Multi-source Nonlinear Power Systems Interconnected by AC/DC links // Cogent Eng. 2018. V. 5. No. 1. P. 1422228.
---
Для цитирования: Джассим Х.М., Зюзев А.М., Крюков О.В. Управление гибридной микросетью с использованием оптимизированного контроллера поддержки сети // Вестник МЭИ. 2023. № 5. С. 11—19 (публикуется на английском языке). DOI: 10.24160/1993-6982-2023-5-11-19
#
1. Yang P. e. a. Decentralized Economic Operation Control for Hybrid AC/DC Microgrid. IEEE Trans. Sustain. Energy. 2019;11;3:1898—1910.
2. Narsardin M.A.M. Voltage Tracking of a DC-DC Buck Converter Using Neural Network Control. Batu Pahat: Universiti Tun Hussein Onn Malaysia, 2012.
3. Ding G. e. a. Control of Hybrid AC/DC Microgrid Under Islanding Operational Conditions. J. Mod. Power Syst. Clean Energy. 2014;2;3:223—232.
4. Tlili F., Kadri A., Bacha F. Advanced Control Strategy for Bidirectional Three Phase AC/DC Converter. Electr. Power Syst. Res. 2020;179:106078.
5. Zhong Q.-C., Konstantopoulos G.C. Current-limiting Droop Control of Grid-connected Inverters. IEEE Trans. Ind. Electron. 2016;64;7:5963—5973.
6. Li P. e. a. An Adaptive Coordinated Optimal Control Method for Parallel Bidirectional Power Converters in AC/DC Hybrid Microgrid. Int. J. Electr. Power Energy Syst. 2021;126:106596.
7. Ren C. e. a. Multi-mode Control for Three-phase Bidirectional AC/DC Converter in Hybrid Microgrid Under Unbalanced AC Voltage Conditions. Proc. Energy Conversion Congress and Exposition. 2019:2658—2663.
8. Wu H. e. a. Control and Modulation of Bidirectional Single-phase AC–DC Three-phase-leg SPWM Converters with Active Power Decoupling and Minimal Storage Capacitance. IEEE Trans. Power Electron. 2015;31;6:4226—4240.
9. Ma T., Cintuglu M.H., Mohammed O.A. Control of a Hybrid AC/DC Microgrid Involving Energy Storage and Pulsed Loads. IEEE Trans. Ind. Appl. 2016;53;1:567—575.
10. Shang L., Guo H., Zhu W. An Improved MPPT Control Strategy Based on Incremental Conductance Algorithm. Prot. Control Mod. Power Syst. 2020;5;1:1—8.
11. Jassim H.M., Ziuzev A. Optimized-fuzzy Droop Controller for Load Frequency Control of a Microgrid with Weak Grid Connection and Disturbances. Proc. 29th Intern. Workshop on Electric Drives: Advances in Power Electronics for Electric Drives. 2022:1—7.
12. Åström K.J., Hägglund T. PID Control. Instrument Soc. America, 1995.
13. Lin Y. e. a. Research Roadmap on Grid-forming Inverters. Golden: National Renewable Energy Lab., 2020.
14. Zhan Z.-H. e. a. Adaptive Particle Swarm Optimization. IEEE Trans. Syst. Man, Cybern. Part B. 2009;39;6:1362—1381.
15. Barisal A.K., Mishra S. Improved PSO Based Automatic Generation Control of Multi-source Nonlinear Power Systems Interconnected by AC/DC links. Cogent Eng. 2018;5;1:1422228
---
For citation: Jassim H.M., Zyuzev A.M., Kryukov O.V. Hybrid Microgrid Control Using an Optimized Grid Supporting Controller. Bulletin of MPEI. 2023;5:11—19. (in English). DOI: 10.24160/1993-6982-2023-5-11-19
Published
2023-06-06
Section
Electrical Complexes and Systems (2.4.2)