Improving the Thermal Power Plant Efficiency through the Use of Solar Technologies

  • Арноб Алам [Arnob Alam] Ани [Ani]
  • Алексей [Aleksey] Анатольевич [A.] Дудолин [Dudolin]
Keywords: solar energy, renewable energy, concentrated solar power, hybrid plants, thermal power plants

Abstract

The demand for energy is growing rapidly with the development and improvement of the standard of living in the world. The interaction between energy generation facilities and the environment is a topic that requires close attention, since these two components have a significant influence on the human existence and progressive growth of productive forces. Over the past few decades, the main attention has been paid to research aimed at improving conventional power plants, reducing harmful emissions into the environment, and introducing renewable energy sources. One of the ways to develop thermal power plants and reduce the impact on the environment is hybridization of solar technologies with thermal power plants.

An overview of solar technologies used in the energy sector is given. A hybrid thermal power plant (TPP) aided by solar technology, known as Solar Aided Power Generation (SAPG), is briefly described. A hybrid model of an SAPG plant is considered, and the efficiency of such power plants is analyzed. The conditions of the People Republic of Bangladesh were chosen for the calculations. Information on the current state of the Bangladesh energy sector, on the climatic features of the country, and on the potential for introducing hybrid solar technologies in it is given. The power plant model was simulated using the Thermoflex software produced by the Thermoflow company. The calculation results have shown that the SAPG plant annually generates by about 25% more power than the standalone concentrated solar power plant.

Information about authors

Арноб Алам [Arnob Alam] Ани [Ani]

Assistant of Thermal Power Plants Dept., NRU MPEI, e-mail: AniA@mpei.ru

Алексей [Aleksey] Анатольевич [A.] Дудолин [Dudolin]

Ph.D. (Techn.), Assistant Professor of Thermal Power Plants Dept., NRU MPEI, e-mail: dudo-linAA@mpei.ru

References

1. National Oceanic and Atmospheric Administration Carbon Dioxide Now More than 50% Higher than Pre-industrial Levels June 3 2022. [Электрон. ресурс]: https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels (дата обращения 28.07.2022).
2. Philibert C. The Present and Future Use of Solar Thermal Energy as a Primary Source of Energy. International Energy Agency, 2005.
3. Spelling J., Laumert B., Fransson T. Advanced Hybrid Solar Tower Combined-cycle Power Plants // Energy Technol. 2014. V. 49. Pp. 1207—1217.
4. Попель О.С. Возобновляемые источники энергии: роль и место в современной и перспективной энергетике // Российский химический журнал. 2008. Т. 52. № 6. С. 95—106.
5. Hu E., Yang Y., Nishimura A., Yilmaz F., Kouzani A. Solar Thermal Aided Power Generation // Appl. Energy. 2010. V. 87. No. 9. Pp. 2881—2885.
6. Ани А.А., Дудолин А.А. Перспективы использования гибридных ТЭС с применением солнечных технологий в энергетике Бангладеш // Вестник МЭИ. 2023. № 1. С. 44—51.
7. Nathan G.J. e. a. Solar Thermal Hybrids for Combustion Power Plant: a Growing Opportunity // Progress in Energy and Combustion Sci. 2018. V. 64. Pp. 4—28.
8. Рябов Г.А. Гибридные ТЭС с использованием солнечной энергии. Новые приложения технологии кипящего слоя // Энергетик. 2021. № 6. С. 20—24.
9. Ани А.А., Дудолин А.А. Повышение эффективности ГТУ путем применения солнечных технологий // Состояние и перспективы развития электро- и теплотехнологии (ХХI Бенардосовские Чтения): Материалы Междунар. науч.-техн. конф. Иваново: Изд-во ИГЭУ им. В.И. Ленина, 2021. С. 71—75.
10. Дудолин А.А., Ани А.А., Олейникова Е.Н. Создание парогазовых энергоблоков с солнечными парогенераторами // Наноструктурированные материалы и преобразовательные устройства для солнечной энергетики: Сб. трудов IV Всерос. науч. конф. Чебоксары: Изд-во ЧГУ им И. Н. Ульянова, 2016. С. 145—148.
11. Bangladesh Power Development Board https://www.bpdb.gov.bd/ [Офиц. сайт] (дата обращения 14.01.2023).
12. Podder A.K., Habibullah M., Roy N. K. Pota H. A Chronological Review of Prospects of Solar Photovoltaic Systems in Bangladesh: Feasibility Study Analysis, Policies, Barriers, and Recommendations // IET Renewable Power Generation. 2021. V. 15. No. 5. Pp. 2109—2132.
13. Noor N., Muneer S. Concentrating Solar Power (CSP) and Its Prospect in Bangladesh // Proc. I Intern. Conf. Developments in Renewable Energy Technol. (ICDRET). 2009. Pp. 1—5.
14. Viebahn P., Kronshage S., Trieb F., Lechon Y. Final Report on Technical Data, Costs, and Life Cycle Inventories of Solar Thermal Power Plants [Электрон. ресурс] https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.2754&rep=rep1&type=pdf (дата обращения 28.10 2022).
15. Rahman M. Solar Energy Potential in Bangladesh // Proc. Intern. Conf. Mechanical Eng. and Renewable Energy. 2013. Pp. 1—5.
16. Bangladesh Meteorological Department. [Офиц. сайт] http://live3.bmd.gov.bd/ (дата обращения 20.011.2022).
17. Ying Y., Hu E.J., Beebe R. Solar Aided Regenerative Rankine Cycle // Proc Intern. Joint Power Generation Conf. 1997. Pp. 555—560.
18. Zhao Y., Hong H., Jin H. Mid and Low-temperature Solar-coal Hybridization Mechanism and Validation // Energy. 2014. V. 74. Pp. 78—87.
19. Hong H., Peng S., Zhao Y., Liu Q., Jin H. A Typical Solar-coal Hybrid Power Plant in China // Energy Proc. 2014. V. 49. Pp. 1777—1783.
20. Peng S., Wang Z., Hong H., Xu D., Jin H. Exergy Evaluation of a Typical 330 MW Solar-hybrid Coal-fired Power Plant in China // Energy Conversion and Management. 2014. V. 85. Pp. 848—855.
21. Zhai R., Liu H., Li C., Zhao M., Yang Y. Analysis of a Solar-aided Coal-fired Power Generation System Based on Thermo-economic Structural Theory // Energy. 2016. V. 102. Pp. 375—387.
22. Wang F., Li H., Zhao J., Deng S., Yan J. Technical and Economic Analysis of Integrating Low-medium Temperature Solar Energy into Power Plant // Energy Conversion and Management. 2016. V. 112. Pp. 459—469.
23. Yan Q., Hu E., Zhai R. Evaluation of Solar Aided Thermal Power Generation with Various Power Plants // Intern. J. Energy Research. 2011. V. 35. Pp. 909—922.
24. Qin J., Zhang Q., Hu E., Duan J., Zhou Y., Zhang H. Optimisation of Solar Aided Power Generation Plant with Storage System Adopting Two Non-displaced Extraction Steam Operation Strategies // Energy. 2022. V. 239. P. 121937.
---
Для цитирования: Ани А.А., Дудолин А.А. .Повышение эффективности тепловой электростанции за счет гибридизации с солнечными технологиями // Вестник МЭИ. 2023. № 3. С. 73—81. DOI: 10.24160/1993-6982-2023-3-73-81.
#
1. National Oceanic and Atmospheric Administration Carbon Dioxide Now More than 50% Higher than Pre-industrial Levels June 3 2022. [Elektron. Resurs]: https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels (Data Obrashcheniya 28.07.2022).
2. Philibert C. The Present and Future Use of Solar Thermal Energy as a Primary Source of Energy. International Energy Agency, 2005.
3. Spelling J., Laumert B., Fransson T. Advanced Hybrid Solar Tower Combined-cycle Power Plants. Energy Technol. 2014;49:1207—1217.
4. Popel' O.S. Vozobnovlyaemye Istochniki Energii: Rol' i Mesto v Sovremennoy i Perspektivnoy Energetike. Rossiyskiy Khimicheskiy Zhurnal. 2008;52;6:95—106. (in Russian).
5. Hu E., Yang Y., Nishimura A., Yilmaz F., Kouzani A. Solar Thermal Aided Power Generation. Appl. Energy. 2010;87;9:2881—2885.
6. Ani A.A., Dudolin A.A. Perspektivy Ispol'zovaniya Gibridnykh TES s Primeneniem Solnechnykh Tekhnologiy v Energetike Bangladesh. Vestnik MEI. 2023;1:44—51. (in Russian).
7. Nathan G.J. e. a. Solar Thermal Hybrids for Combustion Power Plant: a Growing Opportunity. Progress in Energy and Combustion Sci. 2018;64:4—28.
8. Ryabov G.A. Gibridnye TES s Ispol'zovaniem Solnechnoy Energii. Novye Prilozheniya Tekhnologii Kipyashchego Sloya. Energetik. 2021;6:20—24. (in Russian).
9. Ani A.A., Dudolin A.A. Povyshenie Effektivnosti GTU Putem Primeneniya Solnechnykh Tekhnologiy. Sostoyanie i Perspektivy Razvitiya Elektro- i Teplotekhnologii (ХХI Benardosovskie Chteniya): Materialy Mezhdunar. Nauch.-tekhn. Konf. Ivanovo: Izd-vo IGEU im. V.I. Lenina, 2021:71—75. (in Russian).
10. Dudolin A.A., Ani A.A., Oleynikova E.N. Sozdanie Parogazovykh Energoblokov s Solnechnymi Parogeneratorami. Nanostrukturirovannye Materialy i Preobrazovatel'nye Ustroystva dlya Solnechnoy Energetiki: Sb. Trudov IV Vseros. Nauch. Konf. Cheboksary: Izd-vo CHGU im I.N. Ul'yanova, 2016:145—148. (in Russian).
11. Bangladesh Power Development Board https://www.bpdb.gov.bd/ [Ofits. Sayt] (Data Obrashcheniya 14.01.2023).
12. Podder A.K., Habibullah M., Roy N. K. Pota H. A Chronological Review of Prospects of Solar Photovoltaic Systems in Bangladesh: Feasibility Study Analysis, Policies, Barriers, and Recommendations. IET Renewable Power Generation. 2021;15;5:2109—2132.
13. Noor N., Muneer S. Concentrating Solar Power (CSP) and Its Prospect in Bangladesh. Proc. I Intern. Conf. Developments in Renewable Energy Technol. (ICDRET). 2009:1—5.
14. Viebahn P., Kronshage S., Trieb F., Lechon Y. Final Report on Technical Data, Costs, and Life Cycle Inventories of Solar Thermal Power Plants [Elektron. Resurs] https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.2754&rep=rep1&type=pdf (Data Obrashcheniya 28.10 2022).
15. Rahman M. Solar Energy Potential in Bangladesh. Proc. Intern. Conf. Mechanical Eng. and Renewable Energy. 2013:1—5.
16. Bangladesh Meteorological Department. [Ofits. Sayt] http://live3.bmd.gov.bd/ (Data Obrashcheniya 20.011.2022).
17. Ying Y., Hu E.J., Beebe R. Solar Aided Regenerative Rankine Cycle. Proc Intern. Joint Power Generation Conf. 1997:555—560.
18. Zhao Y., Hong H., Jin H. Mid and Low-temperature Solar-coal Hybridization Mechanism and Validation. Energy. 2014;74:78—87.
19. Hong H., Peng S., Zhao Y., Liu Q., Jin H. A Typical Solar-coal Hybrid Power Plant in China. Energy Proc. 2014;49:1777—1783.
20. Peng S., Wang Z., Hong H., Xu D., Jin H. Exergy Evaluation of a Typical 330 MW Solar-hybrid Coal-fired Power Plant in China. Energy Conversion and Management. 2014;85:848—855.
21. Zhai R., Liu H., Li C., Zhao M., Yang Y. Analysis of a Solar-aided Coal-fired Power Generation System Based on Thermo-economic Structural Theory. Energy. 2016;102:375—387.
22. Wang F., Li H., Zhao J., Deng S., Yan J. Technical and Economic Analysis of Integrating Low-medium Temperature Solar Energy into Power Plant. Energy Conversion and Management. 2016;112:459—469.
23. Yan Q., Hu E., Zhai R. Evaluation of Solar Aided Thermal Power Generation with Various Power Plants. Intern. J. Energy Research. 2011;35:909—922.
24. Qin J., Zhang Q., Hu E., Duan J., Zhou Y., Zhang H. Optimisation of Solar Aided Power Generation Plant with Storage System Adopting Two Non-displaced Extraction Steam Operation Strategies. Energy. 2022;239:121937.
---
For citation: Аni А.А., Dudolin А.А. Improving the Thermal Power Plant Efficiency through the Use of Solar Technologies. Bulletin of MPEI. 2023;3:73—81. (in Russian). DOI: 10.24160/1993-6982-2023-3-73-81.
Published
2023-02-14
Section
Energy Systems and Complexes (2.4.5)