Selection of the Parameters of Reactive Power Compensation and Harmonic Filtering Devices for an HVDC Transmission System Based on Voltage Source Converters

  • Ибрагим [Ibragim] Алваза [Alwazah]
  • Рамис [Ramis] Вагизович [V.] Булатов [Bulatov]
  • Ринат [Rinat] Ришатович [R.] Насыров [Nasyrov]
Keywords: AC and DC filters, multi-terminal HVDC transmission system based on voltage source converters, three-level PWM, voltage source converters

Abstract

This article describes a method for selecting the parameters of AC and DC filters for a multi-terminal HVDC transmission system based on voltage source converters (VSC-HVDC). The equivalent circuit model of a multi-terminal VSC-HVDC system with the parameters ±500 kV and 500 MW was developed in the Matlab Simulink software package and presented in d-q coordinate axes. The system voltage source converters in the model were controlled using a three-level pulse-width modulation (PWM) to reduce the level of current and voltage higher harmonic components and decrease the capacity of AC and DC filters. To select the most efficient filter for use as part of a multi-terminal VSC-HVDC system, high-pass filters (HPF) and low-pass filters (LPF) were considered.

Information about authors

Ибрагим [Ibragim] Алваза [Alwazah]

Ph.D.-student of Electric Power Systems Dept., NRU MPEI, e-mail: alwazah.ibrahim@gmail.com

Рамис [Ramis] Вагизович [V.] Булатов [Bulatov]

Assistant of Electric Power Systems Dept., NRU MPEI, e-mail: bulatov_rv@inbox.ru

Ринат [Rinat] Ришатович [R.] Насыров [Nasyrov]

Ph.D. (Techn.), Assistant Professor of  Electric Power Systems Dept., NRU MPEI, e-mail: nasirov.rinat@gmail.com

References

1. Kirakosyan A., El-Saadany E.F., El Moursi M.S., Acharya S., Al Hosani K. Control Approach for the Multi-terminal HVDC System for the Accurate Power Sharing // IEEE Trans. Power Syst. 2018. V. 33. No. 4. Pp. 4323—4334.
2. Ferrante A. e. a. The Mediterranean Master Plan — Consolidating a Secure and Sustainable Electricity Infrastructure in the Mediterranean Region. Paris: CIGRE, 2018.
3. Devco E.C. e. a. Jordan — Syria — Turkey // Mediterranean Project, 2014. Pp. 1—16.
4. Pavlík M., Zbojovský J., German-Sobek M. Vision of the Project DESERTEC // Renewable Energy Sources. 2012. Pp. 19—22.
5. Li S., Li Y. A Novel Fast Current — Control Method for the Back-to-back Converters // Proc. IEEE Int. Conf. Ind. Technol. 2004. V. 1. Pp. 351—357.
6. Du C., Bollen M.H.J., Agneholm E., Sannino A. A New Control Strategy of a VSC-HVDC System for High-quality Supply of Industrial Plants // IEEE Trans. Power Delivery. 2007. V. 22. No. 4. Pp. 2386—2394.
7. Dorantes D.P., Monroy Morales J.L., Hernández Ángeles M. A Filter Design Methodology of a VSC-HVDC System // IEEE Intern. Autumn Meeting Power Electronics and Computing. 2013. Pp. 1—6.
8. Gunnarsson S., Jiang L., Petersson A. Active Filters in HVDC Transmissions. ABB Power Technologies, 1998.
9. Nagwa F.I., Dessouky S.S. Design and Implementation of Voltage Source Converters in HVDC Systems. N.-Y.: Springer, 2021.
10. Pinto R. Multi-terminal DC Networks System Integration, Dynamics and Control // Engenheiro Eletricista, Escola Politécnica da Universidade de São Paulo Laurea Specialistica in Ingegneria Elettrica. Politecnico di Torino geboren te São Paulo, 2014. Pp. 15—38.
11. Arziani G. HVDС for Beginners and Beyond. Levallois-Perret: ALSTOM, 2010.
12. Arrillaga J. High Voltage Direct Current Transmission. London: The Institution of Electrical Engineers, 1998.
13. Alharbi M.M. Mine Modeling of Multi-terminal VSC-based HVDC Systems. Missouri, 2014.
14. Junyent-Ferré A., Gomis-Bellmunt O., Green T.C., Soto-Sanchez D.E. Current Control Reference Calculation Issues for the Operation of Renewable Source Grid Interface VSCs Under Unbalanced Voltage Sags // IEEE Trans. Power Electron. 2011. V. 26. No. 12. Pp. 3744—3753.
15. Misra B., Nayak B.M.B. Performance Analysis of Hybrid Filters in High Power Applications // Proc. II Int. Conf. Contemporary Computing and Informatics. 2016. V. 7. Pp. 330—335.
16. Khatir M. e. a. Performance Analysis of a Voltage Source Converter (VSC) based HVDC Transmission System under Faulted Conditions // Leonardo J. Sci. 2009. No. 15. Pp. 33—46.
17. Shi G., Cai X., Chen Z. Design and Control of Multi-terminal VSC-HVDC for Large Offshore Wind Farms // Prz. Elektrotechniczny. 2012. V. 88. No. 12 A. Pp. 264—268.
18. Tang G., He Z., Pang H. R&D and Application of Voltage Sourced Converter Based High Voltage Direct Current Engineering Technology in China // J. Mod. Power Syst. Clean Energy. 2014. V. 2(1). Pp. 1—15.
19. Guide to the Specification and Design Evaluation of AC Filters for HVDC Systems. CIGRE, 1999. No. 139.
---
Для цитирования: Алваза И., Булатов Р.В., Насыров Р.Р. Выбор параметров фильтрокомпенсирующих устройств для электропередачи постоянного тока на базе преобразователей напряжения // Вестник МЭИ. 2023. № 3. С. 21—28. DOI: 10.24160/1993-6982-2023-3-21-28
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Kirakosyan A., El-Saadany E.F., El Moursi M.S., Acharya S., Al Hosani K. Control Approach for the Multi-terminal HVDC System for the Accurate Power Sharing. IEEE Trans. Power Syst. 2018;33;4:4323—4334.
2. Ferrante A. e. a. The Mediterranean Master Plan — Consolidating a Secure and Sustainable Electricity Infrastructure in the Mediterranean Region. Paris: CIGRE, 2018.
3. Devco E.C. e. a. Jordan — Syria — Turkey. Mediterranean Project, 2014:1—16.
4. Pavlík M., Zbojovský J., German-Sobek M. Vision of the Project DESERTEC. Renewable Energy Sources. 2012:19—22.
5. Li S., Li Y. A Novel Fast Current — Control Method for the Back-to-back Converters. Proc. IEEE Int. Conf. Ind. Technol. 2004;1:351—357.
6. Du C., Bollen M.H.J., Agneholm E., Sannino A. A New Control Strategy of a VSC-HVDC System for High-quality Supply of Industrial Plants. IEEE Trans. Power Delivery. 2007;22;4:2386—2394.
7. Dorantes D.P., Monroy Morales J.L., Hernández Ángeles M. A Filter Design Methodology of a VSC-HVDC System. IEEE Intern. Autumn Meeting Power Electronics and Computing. 2013:1—6.
8. Gunnarsson S., Jiang L., Petersson A. Active Filters in HVDC Transmissions. ABB Power Technologies, 1998.
9. Nagwa F.I., Dessouky S.S. Design and Implementation of Voltage Source Converters in HVDC Systems. N.-Y.: Springer, 2021.
10. Pinto R. Multi-terminal DC Networks System Integration, Dynamics and Control. Engenheiro Eletricista, Escola Politécnica da Universidade de São Paulo Laurea Specialistica in Ingegneria Elettrica. Politecnico di Torino geboren te São Paulo, 2014:15—38.
11. Arziani G. HVDС for Beginners and Beyond. Levallois-Perret: ALSTOM, 2010.
12. Arrillaga J. High Voltage Direct Current Transmission. London: The Institution of Electrical Engineers, 1998.
13. Alharbi M.M. Mine Modeling of Multi-terminal VSC-based HVDC Systems. Missouri, 2014.
14. Junyent-Ferré A., Gomis-Bellmunt O., Green T.C., Soto-Sanchez D.E. Current Control Reference Calculation Issues for the Operation of Renewable Source Grid Interface VSCs Under Unbalanced Voltage Sags. IEEE Trans. Power Electron. 2011;26;12:3744—3753.
15. Misra B., Nayak B.M.B. Performance Analysis of Hybrid Filters in High Power Applications. Proc. II Int. Conf. Contemporary Computing and Informatics. 2016;7:330—335.
16. Khatir M. e. a. Performance Analysis of a Voltage Source Converter (VSC) based HVDC Transmission System under Faulted Conditions. Leonardo J. Sci. 2009;15:33—46.
17. Shi G., Cai X., Chen Z. Design and Control of Multi-terminal VSC-HVDC for Large Offshore Wind Farms. Prz. Elektrotechniczny. 2012;88;12 A:264—268.
18. Tang G., He Z., Pang H. R&D and Application of Voltage Sourced Converter Based High Voltage Direct Current Engineering Technology in China. J. Mod. Power Syst. Clean Energy. 2014;2(1):1—15.
19. Guide to the Specification and Design Evaluation of AC Filters for HVDC Systems. CIGRE, 1999;139.
---
For citation: Alwazah I., Bulatov R.V., Nasyrov R.R. Selection of the Parameters of Reactive Power Compensation and Harmonic Filtering Devices for an HVDC Transmission System Based on Voltage Source Converters. Bulletin of MPEI. 2023;3:21—28. (in Russian). DOI: 10.24160/1993-6982-2023-3-21-28
---
Conflict of interests: the authors declare no conflict of interest
Published
2023-02-14
Section
Electric Power Industry (Technical Sciences) (2.4.3)