A Model for Managing the Lifecycle of Thermal Power Plant Steam Turbine Bearings Using Digital Technologies

  • Сергей [Sergey] Витальевич [V.] Мезин [Mezin]
  • Алексей [Aleksey] Викторович [V.] Благочиннов [Blagochinnov]
Keywords: steam turbine bearings, diagnostics, lifecycle, digital technologies

Abstract

The article discusses the problems of monitoring the condition of bearings, which are among the important components of steam turbine installations, the information about the lifecycle of which at thermal and nuclear power plants is currently not available almost completely. A model of an automated bearing lifecycle management system (ABLMS) based on digital technologies is presented, in which, according to the principles of interoperability, data come from all information systems involved in managing the component lifecycle at all its stages (designing, manufacture, operation, and repair).

The use of this system at power industry enterprises will make it possible to set up stable information links between the developer's personnel (turbine manufacturing plants) and operating personnel, and enhance the quality of equipment and its competitiveness.

Information about authors

Сергей [Sergey] Витальевич [V.] Мезин [Mezin]

Ph.D. (Techn.), Assistant Professor of Automated Control Systems for Thermal Processes Dept., NRU MPEI, e-mail: MezinSV@mpei.ru

Алексей [Aleksey] Викторович [V.] Благочиннов [Blagochinnov]

Ph.D.-student of Automated Control Systems for Thermal Processes Dept., Branch of NRU MPEI in Volzhsky

References

1. Kumar A., Kumar R. Role of Signal Processing, Modeling and Decision Making in the Diagnosis of Rolling Element Bearing Defect: a Review // J. Nondestructive Evaluation. 2019. V. 38(1). Pp. 5—34.
2. Attoui I. e. a. Novel Predictive Features Using a Wrapper Model for Rolling Bearing Fault Diagnosis Based on Vibration Signal Analysis // Intern. J. Advanced Manufacturing Technol. 2020. V. 106. Pp. 3409—3435.
3. Alexander I., Beus-Dukic L. Discovering Requirements: How to Specify Products and Services. N.-Y.: John Wiley & Sons, 2009.
4. ГОСТ 2.601—2006. Единая система конструкторской документации (ЕСКД). Эксплуатационные документы.
5. Грабчак Е.П. Оценка технического состояния энергетического оборудования в условиях цифровой экономики // Надежность и безопасность энергетики. 2017. Т. 10. № 4. С. 268—274.
6. Осотов В.Н. Некоторые аспекты оптимизации системы диагностики силового электрооборудования на примере Свердловэнерго: дис. … канд. техн. наук. Екатеринбург: Изд-во Уральского гос. техн. ун-та, 2000.
7. Приказ Минэнерго Российской Федерации № 676 от 26 июля 2017 г. Об утверждении методики оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей.
8. Andruşcă M. e. a. Using Fuzzy Logic for Diagnosis of Technical Condition of Power Circuit Breakers // Proc. Intern. Conf. Exposition on Electrical and Power Eng. 2014. Pp. 268—273.
9. Mardanov N. Monitoring of the Technical Condition of the Rotating Machines // Informatics and Control Problems. 2019. V. 39(2). Pp. 1—7.
10. Kuryanov V.N., Sultanov M.M., Kuryanova E.V., Skopova E.M. Mathematical Model of the Processes of Restoration of Power Equipment in Power Systems by Criterion of the Index of Technical Condition // J. Physics: Conf. Series. 2020. V. 1683. P. 040241.
11. Бродов Ю.М., Родин В.Н. Ремонт паровых турбин. Екатеринбург: Изд-во Уральского гос. техн. ун-та, 2002.
12. Новиков В.А. Технология производства и монтажа паровых и газовых турбин. Екатеринбург: Изд-во Уральского гос. техн. ун-та, 2009.
13. Капелович Б.Э., Логинов И.Г. Эксплуатация и ремонт паротурбинных установок. Л.: Энергоатомиздат, 1988.
14. Tatarinov V.V. Model for the Formation of the Requirements for Information Technology Used in the Digital Economy Ecosystem // Proc. AIP Conf. 2019. V. 2195(1). P. 020059.
15. Комшин А.С. Математическое моделирование измерительно-вычислительного контроля электромеханических параметров турбоагрегатов фазохронометрическим методом // Измерительная техника. 2013. № 8. С. 12—15.
---
Для цитирования: Мезин С.В., Благочиннов А.В. Модель управления жизненным циклом подшипников паровых турбин тепловых электрических станций с использованием цифровых технологий // Вестник МЭИ. 2022. № 5. С. 128—132. DOI: 10.24160/1993-6982-2022-5-128-132
---
Работа выполнена при поддержке: государственного задания Российской Федерации FSWF-2020-0025 «Разработка методов и анализ способов достижения высокого уровня безопасности и конкурентоспособности объектов энергетических систем на базе цифровых технологий»
#
1. Kumar A., Kumar R. Role of Signal Processing, Modeling and Decision Making in the Diagnosis of Rolling Element Bearing Defect: a Review. J. Nondestructive Evaluation. 2019;38(1):5—34.
2. Attoui I. e. a. Novel Predictive Features Using a Wrapper Model for Rolling Bearing Fault Diagnosis Based on Vibration Signal Analysis. Intern. J. Advanced Manufacturing Technol. 2020:106:3409—3435.
3. Alexander I., Beus-Dukic L. Discovering Requirements: How to Specify Products and Services. N.-Y.: John Wiley & Sons, 2009.
4. GOST 2.601—2006. Edinaya Sistema Konstruktorskoy Dokumentatsii (ESKD). Ekspluatatsionnye Dokumenty. (in Russian).
5. Grabchak E.P. Otsenka Tekhnicheskogo Sostoyaniya Energeticheskogo Oborudovaniya v Usloviyakh Tsifrovoy Ekonomiki. Nadezhnost' i Bezopasnost' Energetiki. 2017;10; 4: 268—274. (in Russian).
6. Osotov V.N. Nekotorye Aspekty Optimizatsii Sistemy Diagnostiki Silovogo Elektrooborudovaniya na Primere Sverdlovenergo: Dis. … Kand. Tekhn. Nauk. Ekaterinburg: Izd-vo Ural'skogo Gos. Tekhn. Un-ta, 2000. (in Russian).
7. Prikaz Minenergo Rossiyskoy Federatsii № 676 ot 26 Iyulya 2017 g. Ob Utverzhdenii Metodiki Otsenki Tekhnicheskogo Sostoyaniya Osnovnogo Tekhnologicheskogo Oborudovaniya i Liniy Elektroperedachi Elektricheskikh Stantsiy i Elektricheskikh Setey. (in Russian).
8. Andruşcă M. e. a. Using Fuzzy Logic for Diagnosis of Technical Condition of Power Circuit Breakers. Proc. Intern. Conf. Exposition on Electrical and Power Eng. 2014:268—273.
9. Mardanov N. Monitoring of the Technical Condition of the Rotating Machines. Informatics and Control Problems. 2019;39(2):1—7.
10. Kuryanov V.N., Sultanov M.M., Kuryanova E.V., Skopova E.M. Mathematical Model of the Processes of Restoration of Power Equipment in Power Systems by Criterion of the Index of Technical Condition. J. Physics: Conf. Series. 2020;1683:040241.
11. Brodov Yu.M., Rodin V.N. Remont Parovykh Turbin. Ekaterinburg: Izd-vo Ural'skogo Gos. Tekhn. Un-ta, 2002. (in Russian).
12. Novikov V.A. Tekhnologiya proizvodstva i montazha parovykh i gazovykh turbin. Ekaterinburg: Izd-vo Ural'skogo Gos. Tekhn. Un-ta, 2009. (in Russian).
13. Kapelovich B.E., Loginov I.G. Ekspluatatsiya i Remont Paroturbinnykh Ustanovok. L.: Energoatomizdat, 1988. (in Russian).
14. Tatarinov V.V. Model for the Formation of the Requirements for Information Technology Used in the Digital Economy Ecosystem. Proc. AIP Conf. 2019;2195(1):020059.
15. Komshin A.S. Matematicheskoe Modelirovanie Izmeritel'no-vychislitel'nogo Kontrolya Elektromekhanicheskikh Parametrov Turboagregatov Fazokhronometricheskim Metodom. Izmeritel'naya Tekhnika. 2013;8:12—15. (in Russian).
---
For citation: Mezin S.V., Blagochinnov A.V. A Model for Managing the Lifecycle of Thermal Power Plant Steam Turbine Bearings Using Digital Technologies. Bulletin of MPEI. 2022;5:128—132. (in Russian). DOI: 10.24160/1993-6982-2022-5-128-132
---
The work is executed at support: The State Task of the Russian Federation FSWF-2020-0025 "Development of Methods and Analysis of Ways to Achieve a High Level of Safety and Competitiveness of Energy System Facilities Based on Digital Technologies"
Published
2022-03-14
Section
Automation and Control of Technological Processes and Production (2.3.3)