Planning the Development of Electricity Generating Capacity in a One-Zone Electric Power System with a High Share of Renewable Energy Sources

  • Ел Добейсси [El Dobeyssy] Рамзи [Ramzy]
  • Артем [Artem] Сергеевич [S.] Ванин [Vanin]
  • Ринат [Rinat] Ришатович [R.] Насыров [Nasyrov]
  • Юрий [Yuriy] Владимирович [V.] Шаров [Sharov]
Keywords: system adequacy, planning of generating capacity development, renewable energy sources, electric power system

Abstract

The article addresses matters concerned with planning the generating capacity in an electric power system with a high share of renewable energy sources. A stochastic nature of renewable energy sources (RES) makes them very different from conventional power plants. The RES power output depends on weather conditions, due to which some power system operators do not include them in the power balance. This leads to an excess of installed generating capacity in the electric power system and growth of electricity tariffs for consumers.

Probabilistic assessments of system adequacy have shown that RES affect the power balance in the power system and do not require to be fully backed up by conventional generation. The article presents the results of calculating the system adequacy for a test IEEE scheme with different share and structure of renewable energy sources. It is shown that the effect of RES on the power balance is governed not only by the annual electricity output, but by the correlation between the RES power output and load curves.

A large share of RES in a power system, entails the need to alter the requirements not only for the conventional generating capacities, but also for their structure. The article presents the results of optimizing the composition of generating equipment for different shares of RES in a power system. It has been shown that, if there are no RES in the power system, preference is given to less maneuverable, but cheaper generation units. With increasing the share of RES in the power system, so does the share of more expensive highly maneuverable units.

A method of planning the generation capacity development for a single-zone power system is proposed. The value of the generation capacity margin has been determined based on the system adequacy calculation, and the mix of generating capacities is refined proceeding from optimization of the generating units loading.

Information about authors

Ел Добейсси [El Dobeyssy] Рамзи [Ramzy]

Head of High-voltage Electric Networks Dept., Head of the General Planning Committee for the Development of Electric Networks and Generating Capacities, Electricity of Lebanon

Артем [Artem] Сергеевич [S.] Ванин [Vanin]

Ph.D. (Techn.), Assistant Professor of Electric Power Systems Dept., NRU MPEI, e-mail: vaninas@mpei.ru

Ринат [Rinat] Ришатович [R.] Насыров [Nasyrov]

Ph.D. (Techn.), Assistant Professor of Electric Power Systems Dept., NRU MPEI, e-mail: nasirov.rinat@gmail.com

Юрий [Yuriy] Владимирович [V.] Шаров [Sharov]

Ph.D. (Techn.), Head of Electric Power Systems Dept., NRU MPEI

References

1. Billinton R. Reliability Evaluation of Power Systems. N.-Y.: Springer Science & Business Media, 1996.
2. Security of Supply — Intern. Rev. Standards and Implementation. National Grid Electricity Transmission PLC, 2017.
3. ГОСТ Р 58730—2019. Единая энергетическая система и изолированно работающие энергосистемы. Планирование развития энергосистем. Расчеты балансовой надежности. Нормы и требования.
4. Парижское соглашение [Электрон. ресурс] www.unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_russian_.pdf (дата обращения 12.01.2022).
5. Распоряжение Правительства Российской Федерации № 670-р от 14 апреля 2016 г. «О подписании Парижского соглашения, принятого 12 декабря 2015 г. 21-й сессией Конференции Сторон Рамочной конвенции Организации Объединенных Наций об изменении климата».
6. Распоряжение Правительства Российской Федерации № 1523-р от 9 июня 2020 г. «Об утверждении Энергетической стратегии Российской Федерации на период до 2035 года».
7. Koh A. Renewable Power Rep. [Электрон. ресурс] www.iea.org/reports/renewable-power (дата обращения 12.01.2022).
8. Bahar H. Tracking Onshore Wind 2020 Rep. [Электрон. ресурс] www.iea.org/reports/onshore-wind (дата обращения 12.01.2022).
9. Баркин О.Г. и др. Обзор российского ветроэнергетического рынка и рейтинг регионов России за 2018 г. СПб.: Российская Ассоциация Ветроиндустрии, 2019.
10. Анфимов С.С. и др. Обзор российского ветроэнергетического рынка и рейтинг регионов России за 2020 г. СПб.: Российская Ассоциация Ветроиндустрии, 2020.
11. Wan C. e. a. Optimal Prediction Intervals of Wind Power Generation // IEEE Trans. Power Systems. 2014. V. 29. No. 3. Pp. 1166—1174.
12. Bludszuweit H., Dominguez-Navarro J.A., Llombart A. Statistical Analysis of Wind Power Forecast Error // IEEE Trans. Power Systems. 2008. V. 23. No. 3. Pp. 983—991.
13. IEEE Reliability Test System // IEEE Trans. Power Apparatus and Systems. 1979. V. 98. No. 6. Pp. 2047—2054.
14. Allan R.N., Billinton R., Abdel-Gawad N.M.K. The IEEE Reliability Test System — Extensions to and Evaluation of the Generating System // IEEE Trans. Power Systems. 1986. V. 1. No. 4. Pp. 1—7.
15. Grigg C. e. a. The IEEE Reliability Test System — 1996. A report Prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee // IEEE Trans. Power Systems. 1999. V. 14. No. 3. Pp. 1010—1020.
16. Barrows C. e. a. The IEEE Reliability Test System: A Proposed 2019 Update // IEEE Trans. Power Systems. 2019. V. 35. No. 1. Pp. 119—127.
17. GitHub [Офиц сайт] www.github.com/GridMod/RTS-GMLC (дата обращения 12.01.2022).
18. Antares Simulator [Офиц сайт] www.antares-simulator.org (дата обращения 12.01.2022).
19. MISO. Business Practices Manual. Energy and Operating Reserve Markets [Офиц сайт] www.misoenergy.org/legal/business-practice-manuals/ (дата обращения 12.01.2022).
20. Малкин П.А. Шлайфштейн В.А. Об обеспечении надёжности в электроэнергетике // Электрические станции. 2010. № 6. С. 2—7
---
Для цитирования: Рамзи Ел Добейсси, Ванин А.С., Насыров Р.Р., Шаров Ю.В. Планирование развития электрической генерации однозонной энергосистемы с высокой долей возобновляемых источников энергии // Вестник МЭИ. 2022. № 5. С. 56—65. DOI: 10.24160/1993-6982-2022-5-56-65
#
1. Billinton R. Reliability Evaluation of Power Systems. N.-Y.: Springer Science & Business Media, 1996.
2. Security of Supply — Intern. Rev. Standards and Implementation. National Grid Electricity Transmission PLC, 2017.
3. GOST R 58730—2019. Edinaya Energeticheskaya Sistema i Izolirovanno Rabotayushchie Energosistemy. Planirovanie Razvitiya Energosistem. Raschety Balansovoy Nadezhnosti. Normy i Trebovaniya. (in Russian).
4. Parizhskoe Soglashenie [Elektron. Resurs] www.unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_russian_.pdf (Data Obrashcheniya 12.01.2022). (in Russian).
5. Rasporyazhenie Pravitel'stva Rossiyskoy Federatsii № 670-r ot 14 Aprelya 2016 g. «O Podpisanii Parizhskogo Soglasheniya, Prinyatogo 12 Dekabrya 2015 g. 21-y Sessiey Konferentsii Storon Ramochnoy Konventsii Organizatsii Obedinennykh Natsiy ob Izmenenii Klimata».(in Russian).
6. Rasporyazhenie Pravitel'stva Rossiyskoy Federatsii № 1523-r ot 9 Iyunya 2020 g. «Ob Utverzhdenii Energeticheskoy Strategii Rossiyskoy Federatsii na Period do 2035 Goda».(in Russian).
7. Koh A. Renewable Power Rep. [Elektron. Resurs] www.iea.org/reports/renewable-power (Data Obrashcheniya 12.01.2022).
8. Bahar H. Tracking Onshore Wind 2020 Rep. [Elektron. Resurs] www.iea.org/reports/onshore-wind (Data Obrashcheniya 12.01.2022).
9. Barkin O.G. i dr. Obzor Rossiyskogo Vetroenergeticheskogo Rynka i Reyting Regionov Rossii za 2018 g. SPb.: Rossiyskaya Assotsiatsiya Vetroindustrii, 2019. (in Russian).
10. Anfimov S.S. i dr. Obzor Rossiyskogo Vetroenergeticheskogo Rynka i Reyting Regionov Rossii za 2020 g. SPb.: Rossiyskaya Assotsiatsiya Vetroindustrii, 2020. (in Russian).
11. Wan C. e. a. Optimal Prediction Intervals of Wind Power Generation. IEEE Trans. Power Systems. 2014;29;3:1166—1174.
12. Bludszuweit H., Dominguez-Navarro J.A., Llombart A. Statistical Analysis of Wind Power Forecast Error. IEEE Trans. Power Systems. 2008;23;3:983—991.
13. IEEE Reliability Test System. IEEE Trans. Power Apparatus and Systems. 1979;98;6:2047—2054.
14. Allan R.N., Billinton R., Abdel-Gawad N.M.K. The IEEE Reliability Test System — Extensions to and Evaluation of the Generating System. IEEE Trans. Power Systems. 1986;1;4:1—7.
15. Grigg C. e. a. The IEEE Reliability Test System — 1996. A report Prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee. IEEE Trans. Power Systems. 1999;14;3:1010—1020.
16. Barrows C. e. a. The IEEE Reliability Test System: A Proposed 2019 Update. IEEE Trans. Power Systems. 2019;35;1:119—127.
17. GitHub [Ofits Sayt] www.github.com/GridMod/RTS-GMLC (Data Obrashcheniya 12.01.2022).
18. Antares Simulator [Ofits Sayt] www.antares-simulator.org (Data Obrashcheniya 12.01.2022).
19. MISO. Business Practices Manual. Energy and Operating Reserve Markets [Ofits Sayt] www.misoenergy.org/legal/business-practice-manuals/ (Data Obrashcheniya 12.01.2022).
20. Malkin P.A. Shlayfshteyn V.A. Ob Obespechenii Nadezhnosti v Elektroenergetike. Elektricheskie Stantsii. 2010;6:2—7. (in Russian)
---
For citation: Ramzy El Dobeyssy, Vanin A.S., Nasyrov R.R., Sharov Yu.V. Planning the Development of Electricity Generating Capacity in a One-Zone Electric Power System with a High Share of Renewable Energy Sources. Bulletin of MPEI. 2022;5:56—65. (in Russian). DOI: 10.24160/1993-6982-2022-5-56-65
Published
2022-01-19
Section
Electric Power Industry (Technical Sciences)