Achieving Better Accuracy in Modeling Voltage Transformers

  • Валерий [Valery] Иванович [I.] Диденко [Didenko]
  • Артем [Artem] Кириллович [K.] Крюков [Kriukov]
Keywords: transformation ratio, voltage transformer, modeling

Abstract

Transformers designed for operation at network frequencies (50 or 60 Hz) unavoidably transform also the voltages of higher harmonic components with frequencies up to 2 kHz. In modelling a voltage transformer (VT), a standard T-equivalent circuit with constant parameters at all frequencies is commonly used. This circuit contains a horizontal branch and a vertical branch. The horizontal branch parameters were taken equal for the primary and secondary windings. For an ideal VT, the horizontal branch resistances and inductances are equal to zero, and the vertical branch resistance and inductance are equal to infinity. The article analyzes the transformation ratio equal to the ratio of the effective voltage across the VT secondary winding to the effective voltage across its primary winding. The transformation ratio of an ideal VT is equal to the ratio of the numbers of turns in its secondary and primary windings. The transformation ratio error depends on the extent to which the VT parameters differ from the ideal values mentioned before. The necessary VT transformation accuracy depends on its application. Experimental investigations were carried out on a multipurpose Type OSM-1.0 UZ voltage transformer. Its parameters were determined in the frequency band from 50 Hz to 2 kHz according to the three voltmeter method using a 34401A voltmeter. To improve the modeling adequacy, the same parameters were determined by a Type E7-22 RLC meter at the frequencies equal to 120 and 1000 Hz. For both methods, the uncertainty of the VT parameter measurements and the actual discrepancy between the measured values obtained by both these methods were within 2%. To obtain generalized results, a normalized transformation ratio was introduced, the value of which for the ideal VT is equal to unity. The measured VT parameters were used to study the VT errors, as well as the errors of their assessments by means of three models: (i) the conventional one (involving four constant values of the parameters measured at the 50 Hz frequency), (ii) the reference one (involving the VT parameter values measured at all analyzed frequencies), and (iii) the new one (involving nine parameters measured at DC and at the 50 and 2000 Hz frequencies). The transformation ratio was calculated for all these models using the MicroCap and Wofram Mathematics computer programs in the no-load operation mode, during operation with the nominal active load of 50 Ω, and during operation with the nominal active load connected in parallel with a 10 µF capacitor. The frequency errors of the first and third models were determined with respect to the reference model and the 50 Hz frequency. It has been demonstrated from the simulation results that the proposed model yields the accuracy a factor of 1.5 to 3.6 better than the standard one.

Information about authors

Валерий [Valery] Иванович [I.] Диденко [Didenko]

Science degree:

Dr. Sci. (Techn.)

Workplace

Information-Measuring Technique Dept., NRU MPEI

Occupation

Professor

Артем [Artem] Кириллович [K.] Крюков [Kriukov]

Workplace

PJSC «MAK «Vympel»

Occupation

Engineer

References

1. Crotti G. e. a. A Technique for Real-time Bandwidth Enhancement of Instrument Voltage Transformers // Proc. XXI IMEKO World Congress Measurement in Research and Industry. Check Republic, 2015.

2. Дубовицкий Г.П. Трансформаторы. Назначение и области применения [Электрон. ресурс] http:// model.exponenta.ru/electro/0070.htm (дата обращения 23.04.2017).

3. Серов А.Н. Разработка и исследование прибора для измерения показателей качества электроэнергии с повышенной точностью: автореф. дисс. ... канд. техн. наук. М., 2016.

4. ГОСТ 16110—82. Трансформаторы силовые. Термины и определения.

5. ГОСТ 18685—73. Трансформаторы тока и напряжения. Термины и определения.

6. ГОСТ IEC60044-1—2013. Трансформаторы измерительные.

7. ГОСТ 30830—2002. Трансформаторы силовые. Ч. 1. Общие положения.

8. ГОСТ 9680—77. Трансформаторы силовые мощностью 0,01 кВ∙А и более. Ряд номинальных мощностей.

9. РД ЭО 0410—02. Методические указания по оценке состояния и продлению срока службы силовых трансформаторов.

10. Лурье А.И., Шлегель О.Г. Измерение отклонения индуктивного сопротивления при электродинамических испытаниях силовых трансформаторов // Электротехника. 1991. № 12. С. 35—38.

11. Диденко В.И., Майоршина Т.С. Контроль качества трансформатора напряжения при подаче на его вход скачка напряжения // Вестник МЭИ. 2012. № 3. С. 58—61.

12. ПМГ 96—2009. ГСИ. Результаты и характеристики качества измерений. Формы представления.

13. Вольдек А.И., Попов В.В. Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы. СПб.: Питер, 2008.

14. Горошко Д.Л. Метрология, стандартизация, сертификация. Владивосток: Изд-во ВГУЭС, 2003.

15. Пат. № 2491559 РФ. Способ определения сопротивления и индуктивности рассеяния первичной обмотки трансформатора напряжения / В.И. Диденко, А.А. Москвичев // Бюл. изобрет. 2013. № 24.

16. Didenko V., Sirotin D. Accurate Measurement of Resistance and Inductance of Transformer Winding // Proc. XX IMEKO World Congress Metrology for Green Growth. Busan, 2012.
---
Для цитирования: Диденко В.И., Крюков А.К. Повышение точности моделирования трансформаторов напряжения // Вестник МЭИ. 2018. № 3. С. 101—108. DOI: 10.24160/1993-6982-2018-3-101-108.
#
1. Crotti G. e. a. A Technique for Real-time Bandwidth Enhancement of Instrument Voltage Transformers. Proc. XXI IMEKO World Congress Measurement in Research and Industry. Check Republic, 2015.

2. Dubovitskiy G.P. Transformatory. Naznachenie i Oblasti Primeneniya [Elektron. Resurs] http://model.exponenta.ru/electro/0070.htm (Data Obrashcheniya 23.04.2017). (in Russian).

3. Serov A.N. Razrabotka i Issledovanie Pribora dlya Izmereniya Pokazateley Kachestva Elektroenergii s Povyshennoy Tochnost'yu: Avtoref. Diss. ... Kand. Tekhn. Nauk. M., 2016. (in Russian).

4. GOST 16110—82. Transformatory Silovye. Terminy i Opredeleniya. (in Russian).

5. GOST 18685—73. Transformatory Toka i Napryazheniya. Terminy i Opredeleniya. (in Russian).

6. GOST IEC 60044-1—2013. Transformatory Izmeritel'nye. (in Russian).

7. GOST 30830—2002. Transformatory Silovye. Ch. 1. Obshchie polozheniya. (in Russian).

8. GOST 9680—77. Transformatory Silovye Moshchnost'yu 0,01 kV∙A i Bolee. Ryad Nominal'nykh Moshch- nostey. (in Russian).

9. RD EO 0410—02. Metodicheskie Ukazaniya po Otsenke Sostoyaniya i Prodleniyu Sroka Sluzhby Silovykh Transformatorov. (in Russian).

10. Lur'e A.I., Shlegel' O.G. Izmerenie Otkloneniya Induktivnogo Soprotivleniya pri Elektrodinamicheskikh Ispytaniyakh Silovykh Transformatorov. Elektrotekhnika. 1991;12:35—38. (in Russian).

11. Didenko V.I., Mayorshina T.S. Kontrol' Kachestva Transformatora Napryazheniya pri Podache na Ego Vkhod Skachka Napryazheniya. Vestnik MPEI. 2012;3:58—61. (in Russian).

12. PMG 96—2009. GSI. Rezul'taty i Kharakteristiki Kachestva Izmereniy. Formy Predstavleniya. (in Russian).

13. Vol'dek A.I., Popov V.V. Elektricheskie Mashiny. Vvedenie v Elektromekhaniku. Mashiny Postoyannogo Toka i Transformatory. SPb.: Piter, 2008. (in Russian).

14. Goroshko D.L. Metrologiya, Standartizatsiya, Sertifikatsiya. Vladivostok: Izd-vo VGUES, 2003. (in Russian).

15. Pat. № 2491559 RF. Sposob Opredeleniya Soprotivleniya i Induktivnosti Rasseyaniya Pervichnoy Obmotki Transformatora Napryazheniya / V.I. Didenko, A.A. Moskvichev Byul. izobret. 2013;24. (in Russian).

16. Didenko V., Sirotin D. Accurate Measurement of Resistance and Inductance of Transformer Winding. Proc. XX IMEKO World Congress Metrology for green Growth. Busan, 2012.
---
For citation: Didenko V.I., Kriukov A.K. Achieving Better Accuracy in Modeling Voltage Transformers. MPEI Vestnik. 2018;3:101—108. (in Russian). DOI: 10.24160/1993-6982-2018-3-101-108.
Published
2018-06-01
Section
Informatics, computer engineering and control (05.13.00)