Synthesizing the Control System for a Bridgeless Power Factor Corrector Operating in the Discontinuous Conduction Mode

  • Сергей [Sergey] Владимирович [V.] Дроздецкий [Drozdetskiy]
Keywords: bridgeless power factor corrector, discontinuous conduction mode, transfer function zeroes and poles, continuous model, power factor self-correction

Abstract

The classical systems for control of power factor correctors (PFC) are subordinated-type control systems with two feedback loops: a slow loop serving to stabilize the output voltage and a fast loop serving to shape a sinusoidal input current. Designing of these control systems involves difficulties due to the need of ensuring stable operation of the external and internal loops in the specified range of input voltage and output power. The power factor correction converters with linear input volt-ampere and adjustment characteristics do not require the current loop because the input current will repeat the network voltage waveform due to the power circuit features. The specific features of synthesizing a single-loop control system for a power factor corrector that uses a bridgeless single-phase PFC as the power circuit. Such a structure operating in the choke discontinuous conduction mode has the property of self-correcting the power factor and can operate at a network voltage either higher or lower than the input voltage. The use of a boost and buck-boost PFC makes it possible to do without a secondary DC-DC converter serving to match the boost PFC with the load. The adjustment characteristics of a bridgeless PFC operating in discontinuous and continuous conduction modes are presented. The converter nonlinear model linearized using the Matlab/Simulink tools and a manually linearized model in the form of a control transfer function are constructed. It is shown that with the bridgeless PFC operating in the intermittent current mode, the frequencies of right-half plane zeroes and high- frequency poles are located much higher than the frequency of the voltage loop unity gain and do not affect the stability of converter operation. The switched model involving a correction loop synthesized in the Matlab/Simulink environment was investigated, and it has been demonstrated that the converter shows stable operation in the entire range of input voltage and output power. Hence, it can be stated that the used continuous and single-loop control system can be used for inverting, series-parallel, flyback, and other converters operating in the intermittent current mode and having the power factor self-correction ability.

Information about author

Сергей [Sergey] Владимирович [V.] Дроздецкий [Drozdetskiy]

Workplace

Electronics and Microprocessor Technology Dept., Branch of NRU MPEI in Smolensk

Occupation

Assistant

References

1. Пат. 2541910 РФ. Однофазный безмостовой корректор коэффициента мощности / С.В. Дроздецкий, И.А. Кругликов, А.О. Ширяев, И.В. Якименко // Бюл. изобрет. 2015. № 5.

2. Дроздецкий С.В., Кругликов И.А., Ширяев А.О., Якименко И.В. Безмостовой корректор коэффициента мощности для автономных энергосистем // Практическая силовая электроника. 2017. № 2. С. 32—37.

3. Аверин С.В., Малышев М.А. Сравнение основных структур преобразователей постоянного напряжения для коррекции коэффициента мощности // Практическая силовая электроника. 2009. № 4. С. 31—36.

4. Амелина М.А., Амелин С.А., Фролков О.А. Усовершенствование непрерывной модели импульсного регулятора напряжения // Вестник МЭИ. 2016. № 2. С. 70—74.

5. Nirgude G., Tirumala R., Mohan N. A New, Large-signal Average Model for Single-switch DC-DC Converters Operating in Both CCM and DCM // Power Electronics Specialists Conf. 2001. V. 3. Pp. 1736—1741.

6. Sun J., Mitchell D.M., Greuel M.F., Krein P.T. Averaged Modeling of PWM Converters Operating in Discontinuous Conduction Mode // IEEE Trans. Power Electronics. 2001. V. 16. No. 4. Pp. 482—492.

7. Амелина М.А., Гатина А.И. Методика расчета статического режима усилителя рассогласования на основе микросхемы TL431 // Энергетика, информатика, инновации — 2015: Сб. трудов V Междунар. науч.- техн. конф. Смоленск: Изд-во Универсум, 2015. Т. 1. С. 245—250.
---
Для цитирования: Дроздецкий С.В. Синтез системы управления безмостовым корректором коэффициента мощности в режиме прерывистого тока // Вестник МЭИ. 2018. № 3. С. 66—72. DOI: 10.24160/1993-6982-2018-3-66-72.
#
1. Pat. 2541910 RF. Odnofaznyy Bezmostovoy Korrektor Koeffitsienta Moshchnosti / S.V. Drozdetskiy, I.A. Kruglikov, A.O. Shiryaev, I.V. Yakimenko // Byul. izobret. 2015. № 5. (in Russian).

2. DrozdetskiyS.V., KruglikovI.A., ShiryaevA.O., YakimenkoI.V. Bezmostovoy Korrektor Koeffitsienta Moshchnosti dlya Avtonomnyh Energosistem. Prakticheskaya Silovaya Elektronika. 2017;2:32—37. (in Russian).

3. AverinS.V., MalyshevM.A. Sravnenie Osnovnyh Struktur Preobrazovateley Postoyannogo Napryazheniya Dlya Korrektsii Koeffitsienta Moshchnost. Prakticheskaya Silovaya Elektronika. 2009;4:31—36.

4. AmelinaM.A., AmelinS.A., FrolkovO.A. Usovershenstvovanie Nepreryvnoy Modeli Impul'snogo Regulyatora Napryazheniya. Vestnik MPEI. 2016;2:70—74. (in Russian).

5. Nirgude G., Tirumala R., Mohan N. A New, Large-signal Average Model for Single-switch DC-DC Converters Operating in Both CCM and DCM. Power Electronics Specialists Conf. 2001;3:1736—1741.

6. Sun J., Mitchell D.M., Greuel M.F., Krein P.T. Averaged Modeling of PWM Converters Operating in Discontinuous Conduction Mode. IEEE Trans. Power Electronics. 2001;16;4:482—492.

7. Amelina M.A., Gatina A.I. Metodika Rascheta Staticheskogo Rezhima Usilitelya Rassoglasovaniya Na Osnove Mikroskhemy Tl431. Energetika, Informatika, Innovatsii —2015: Sb. Trudov V Mezhdunar. Nauch.-tekhn. Konf. Smolensk: Izd-vo Universum, 2015;1:245—250. (in Russian).
---
For citation: Drozdetskiy S.V. Synthesizing the Control System for a Bridgeless Power Factor Corrector Operating in the Discontinuous Conduction Mode. MPEI Vestnik. 2018;3:66—72. (in Russian). DOI: 10.24160/1993-6982-2018-3-66-72.
Published
2018-06-01
Section
Electrical Engineering (05.09.00)