Exhaust Gas Heat Utilization Employment Of Water-сooled Gas Pipes

  • Ольга [Olga] Евгеньевна [E.] Прун [Prun]
  • Андрей [Andrey] Борисович [B.] Гаряев [Garyaev]
  • Илья [Ilya] Владимирович [V.] Сынков [Synkov]
Keywords: heat recovery devices, gas coolers, cooled gas ducts, gas compressor units, flue gas heat recovery

Abstract

Exhaust heat recovery is one of several ways to improve the efficiency of gas-compressor units. Recuperators and boilers used for these purposes are placed on the way of flue gas to provide a cross-flow of heat exchange area. The heat exchange area should be large due to low heat exchange coefficient numbers between a surface of a heat exchanger and a flue gas flow. This factor can result in large pressure drops of a gas flow and can cause significant gas turbine capacity reduction. Heat exchanger placed on the walls of a gas pipe section has smaller influence on the turbine capacity but its heat exchange area can not be large. From the other hand gas power plants are often a big distance away from heavy heat consumers, therefore large heat capacities of heat utilizers could not be in demand. It means that the main goal of the redundant heat usage is hot water supply and heating of operating platforms and several adjacent objects. In this work three different constructions of recuperative heat utilizers were examined. All of them were placed on the walls of a flue pipe section. The cooling heat carrier was water. An objective function was used to compare thermal and hydraulic characteristics of recuperators such as heat capacity and electricity need for water pumping and turbine capacity loss. Multiple checking calculations were made for each construction type of a heat exchanger. Conclusions about the best construction of a heat utilizer were made based on computational results.

Information about authors

Ольга [Olga] Евгеньевна [E.] Прун [Prun]

Workplace

Heat-and-Mass Exchange Processes and Installations Dept., NRU MPEI

Occupation

Senior Lecturer

Андрей [Andrey] Борисович [B.] Гаряев [Garyaev]

Science degree:

Dr.Sci. (Techn.)

Workplace

Heat-and-Mass Transfer Processes and Installations Dept., NRU MPEI

Occupation

Head of department

Илья [Ilya] Владимирович [V.] Сынков [Synkov]

Science degree:

Ph.D. (Techn.)

Workplace

Heat-and-Mass Exchange Processes and Installations Dept., NRU MPEI

Occupation

Assistant

References

1. Carapellucci R., Giordano L. The Recovery of Exhaust Heat from Gas Turbines // Efficiency, Performance and Robustness of Gas Turbines. Rijeka: InTech, 2012.

2. Carapellucci R. A Unified Approach to Assess Performance of Different Techniques for Recovering Exhaust Heat From Gas Turbines // Energy Conversion and Management. 2009. V. 50. Pp. 1218 — 1226.

3. Теплообменники энергетических установок. Екатеринбург: Изд-во Сократ, 2003.

4. Тимошенко С.Н., Тищенко П.И. Проблемы эксплуатации водоохлаждаемых элементов дуговых сталеплавильных печей высокой мощности // Наукові праці Донецького національного техн. ун-ту. Серія «Металургія». 2009. Вип. 11 (159). С. 58 — 65.

5. Швец М., Сталинский Д. Очистка газов в металлургических производствах // НМ — оборудование. 2007. № 2. С. 50 — 57.

6. Гаряев А.Б., Прун О.Е., Клименко А.В. Определение оптимального соотношения характеристик микроканальных теплообменных аппаратов // Теплофизика и аэромеханика. 2015. Т. 22. № 6. С. 751 — 760.

7. Кириллин В.А., Сычев В.В., Шейндлин А.Е. Техническая термодинамика. М.: Изд. дом МЭИ, 2008.

8. Костюк А.Г., Фролов В.В., Булкин А.Е., Трухний А.Д. Турбины тепловых и атомных электрических станций. М.: Изд-во МЭИ, 2001.

9. Справочник по расчетам гидравлических и вентиляционных систем. СПб.: АНО НПО «Мир и Семья», НПО «Профессионал», 2006.

10. Каталог энергетического оборудования. М.: Газотурбинные технологии, 2016.
---
Для цитирования: Прун О.Е., Гаряев А.Б., Сынков И.В. Использование водоохлаждаемых газоходов в качестве теплоутилизаторов газоперекачивающих агрегатов // Вестник МЭИ. 2018. № 3. С. 44—50. DOI: 10.24160/1993-6982-2018-3-44-50.
#
1. Carapellucci R., Giordano L. The Recovery of Exhaust Heat from Gas Turbines. Efficiency, Performance and Robustness of Gas Turbines. Rijeka: InTech, 2012.

2. Carapellucci R. A Unified Approach to Assess Performance of Different Techniques for Recovering Exhaust Heat From Gas Turbines. Energy Conversion and Management. 2009;50:1218 — 1226.

3. Teploobmenniki Energeticheskih Ustanovok. Ekaterinburg: Izd-vo Sokrat, 2003. (in Russian).

4. Timoshenko S.N., Tishchenko P.I. Problemy Ekspluatatsii Vodoohlazhdaemyh Elementov Dugovyh Staleplavil'nyh Pechey Vysokoy Moshchnosti. Naukovі Pratsі Donets'kogo Natsіonal'nogo Tekhn. Un-tu. Serіya «Metalurgіya». 2009;11 (159):58 — 65. (in Russian).

5. Shvets M., Stalinskiy D. Ochistka Gazov v Metallurgicheskih Proizvodstvah. NM — Oborudovanie. 2007;2:50 — 57. (in Russian).

6. Garyaev A.B., Prun O.E., Klimenko A.V. Opredelenie Optimal'nogo Sootnosheniya Harakteristik Mikro-kanal'nyh Teploobmennyh Apparatov. Teplofizika i Aeromekhanika. 2015;22;6:751 — 760. (in Russian).

7. Kirillin V.A., Sychev V.V., Sheyndlin A.E. Tekhnicheskaya Termodinamika. M.: Izd. Dom MPEI, 2008. (in Russian).

8. Kostyuk A.G., Frolov V.V., Bulkin A.E., Truhniy A.D. Turbiny Teplovyh i Atomnyh Elektricheskih Stantsiy. M.: Izd-vo MPEI, 2001. (in Russian).

9. Spravochnik po Raschetam Gidravlicheskih i Ventilyatsionnyh Sistem. SPb.: ANO NPO «Mir i Sem'ya», NPO «Professional», 2006. (in Russian).

10. Katalog Energeticheskogo Oborudovaniya. M.: Gazoturbinnye Tekhnologii, 2016. (in Russian).
---
For citation: Prun O.E., Garyaev A.B., Synkov I.V. Exhaust Gas Heat Utilization Employment Of Water-сooled Gas Pipes. MPEI Vestnik.2018;3:44—50. (in Russian). DOI: 10.24160/1993-6982-2018-3-44-50.
Published
2018-06-01
Section
Power engineering (05.14.00)