Studying the Additional Mode of a Profiled Sapphire Disk Resonator

  • Даниил [Daniil] Андреевич [A.] Фролов [Frolov]
  • Дмитрий [Dmitriy] Петрович [P.] Царапкин [Tcarapkin]
Keywords: profiling, disk dielectric resonator, sapphire, microwave self-oscillator

Abstract

Sapphire dielectric resonators used in low-noise microwave self-oscillators for improving the oscillatory system Q-factor usually have the form of a smooth cylinder or disk inside a coaxial metal screen. Since only high azimuthal modes of the resonator possess a high Q-factor, a multitude of additional resonances able to upset normal operation of the generator exist in the vicinity of the chosen mode. To rarefy the spectrum of the resonator’ interfering oscillations near the prescribed frequency, it was proposed to replace the resonator’s smooth cylindrical wall by a certain periodically profiled surface. During the investigation, a previously unknown mode was revealed, which had a Q-factor commensurable with that of the planned modes. Its antinodes were found to be adjacent (from the inside) to the cut out circles and not in the sapphire element "petals" as might be expected. It is shown that by using the new disk structure it becomes possible to improve the resonator’s Q-factor in modes with a lower azimuthal number, and it should be noted that the Q-factor gain decreases with increasing the azimuth number when a shift is made from the plain disk to a profiled one. It has been found that with using a profiled sapphire element it becomes possible to substantially reduce the resonator volume owing to a smaller required screen radius. It can be expected that a more rarefied spectrum of resonant frequencies will simultaneously be obtained.

Information about authors

Даниил [Daniil] Андреевич [A.] Фролов [Frolov]

Workplace

Formation and Processing of Radio Signals Dept., NRU MPEI

Occupation

ph.D.-student

Дмитрий [Dmitriy] Петрович [P.] Царапкин [Tcarapkin]

Science degree:

Dr.Sci. (Techn.)

Workplace

Formation and Processing of Radio Signals Dept., NRU MPEI

Occupation

Professor

References

1. А.с. № 995675 СССР. Генератор сверхвысоких частот / Д.П. Царапкин, Е.Н. Иванов.

2. Tobar M.E. е. а. Analysis of the Rutile-ring Method of Frequency Temperature Compensating a High-Q Whispering Gallery Sapphire Resonator // Proc. IEEE/ EIA Int. Freq. Contr. Symp. and Exhibition. Kansas City (USA), 2000. Pp. 485—492.

3. Tobar M.E. е. а. High-Q Sapphire-rutile Frequency Temperature Compensated Microwave Dielectric Resonators // IEEE Trans. UFFC. 1998. V. 45. No. 3. Pp. 830—836.

4. Dick G. J., Saunders J. Measurement and Analysis of a Microwave Oscillator Stabilized by a Sapphire Dielectric Ring Resonator // IEEE Trans. 1990. V. UFFC-37. No. 5. Pp. 339—346.

5. Wang R.T., Dick G.J. Cryo-cooled Sapphire Oscillator with Mechanical Compensation // Proc. IEEE Int. Freq. Contr. Symp. & PDA Exh. New Orleans (USA), 2002. Pp. 543—547.

6. Фролов Д.А., Царапкин Д.П. Моделирование резонатора на основе профилированного сапфирового диска // Вестник МЭИ. 2016. № 3. С. 91—96.

7. Царапкин Д.П., Фролов Д.А. Сапфировый резонатор для малошумящих автогенераторов СВЧ с профилированной цилиндрической поверхностью // Электроника и микроэлектроника СВЧ: Сборник статей IV Всерос. конф. СПб.: Изд-во СПбГЭТУ ЛЭТИ, 2015. Т. 1. С. 237—239.

8. Getting Started: An Eigenmode Problem. Pittsburgh: Ansoft Corp., 2001.

9. Курушин А.А., Пластиков А.Н. Проектирование СВЧ-устройств в среде CST Microwave Studio. М.: Изд. дом МЭИ, 2012.
---
Для цитирования: Фролов Д.А., Царапкин Д.П. Исследование дополнительной моды резонатора на основе профилированного сапфирового диска // Вестник МЭИ. 2018. № 2. С. 140—144. DOI: 10.24160/1993-6982-2018-2-140-144.
#
1. A.s. № 995675 SSSR. Generator Sverkhvysokikh Chastot / D.P. Tsarapkin, E.N. Ivanov. (in Russian).

2. Tobar M.E. e. a. Analysis of the Rutile-ring Method of Frequency Temperature Compensating a High-Q Whispering Gallery Sapphire Resonator. Proc. IEEE/ EIA Int. Freq. Contr. Symp. and Exhibition. Kansas City (USA), 2000:485—492.

3. Tobar M.E. e. a. High-Q sapphire-rutile Frequency Temperature Compensated Microwave Dielectric Resonators. IEEE Trans. UFFC. 1998;45;3:830—836.

4. Dick G. J., Saunders J. Measurement and Analysis of a Microwave Oscillator Stabilized by a Sapphire Dielectric Ring Resonator. IEEE Trans. 1990;UFFC-37;5: 339—346.

5. Wang R.T., Dick G.J. Cryo-cooled Sapphire Oscillator with Mechanical Compensation. Proc. IEEE Int. Freq. Contr. Symp. & PDA Exh. New Orleans (USA), 2002:543—547.

6. Frolov D.A., Tsarapkin D.P. Modelirovanie Rezonatora na Osnove Profilirovannogo Sapfirovogo Diska. Vestnik MPEI. 2016;3:91—96. (in Russian).

7. Tsarapkin D.P., Frolov D.A. Sapfirovyy Rezonator dlya Maloshumyashchikh Avtogeneratorov SVCH s Profilirovannoy Tsilindricheskoy Poverkhnost'yu. Elektronika i Mikroelektronika SVCH: Sbornik Statey IV Vseros. Konf. SPb.: Izd-vo SPbGETU LETI, 2015;1:237—239. (in Russian).

8. Getting Started: An Eigenmode Problem. Pittsburgh: Ansoft Corp., 2001.

9. Kurushin A.A., Plastikov A.N. Proektirovanie SVCH-ustroystv v Srede CST Microwave Studio. M.: Izd. dom MPEI, 2012.
---
For citation: Frolov D.A., Tsarapkin D.P. Studying the Additional Mode of a Profiled Sapphire Disk Resonator. MPEI Vestnik. 2018;2: 140—144. (in Russian). DOI: 10.24160/1993-6982-2018-2-140-144.
Published
2019-02-05
Section
Radio Engineering and Communications (05.12.00)