Studying the Temperature Field in a Power Integrated Circuit and Optimizing the Topology of Its Electrical Connections for Improving Its Miniaturization Parameters

  • Павел [Pavel] Анатольевич [A.] Воронин [Voronin]
  • Игорь [Igor] Павлович [P.] Воронин [Voronin]
Keywords: power module, stray inductance, stray capacitance, thermal field

Abstract

The thermal fields and distributed parasitic elements in the power integrated circuit (PIC) structure are investigated. The 3D temperature field of the PIC is calculated assuming that its heat-generating elements (silicon crystals) are located on the ceramic plate surface at the nodes of square lattice with a specified size. During the modeling, different geometric parameters of the crystals, metallization layers, and lattice spacing of the simulated thermal field were used. The temperature distribution in the module structure along the vertical axis passing through the semiconductor crystal center was calculated, and it has been found from the calculation results that the main temperature difference between the crystal and medium falls across the ceramic plate layer and the heat-conducting paste layer between the module base and cooler. The temperature distribution over the crystal surface was analyzed, and it has been confirmed from the analysis results that the temperature in the crystal peripheral regions is essentially lower than it is at the crystal center. The area of these relatively cold regions is about half the crystal total area. It has been concluded that in designing a module, its elementary cell’s maximal period can be limited at a level corresponding to twice the crystal linear size. The obtained calculation results made it possible to determine the optimal positions of placing the semiconductor crystals on the power module’s ceramic plate surface and the topology of their electrical connections. It has been found that the optimal positioning of crystals according to the minimum temperature overheating criterion does not correspond to the optimal positioning in terms of minimizing parasitic structural elements. For this reason, weight coefficients taking into account the dominant influence of different factors were adopted. It has been demonstrated that with increasing the switched power level, it becomes advisable to place semiconductor crystals on separate ceramic plates.

Information about authors

Павел [Pavel] Анатольевич [A.] Воронин [Voronin]

Science degree:

Ph.D. (Techn.)

Workplace

Industrial Electronics Dept., NRU MPEI

Occupation

Assistant Professor

Игорь [Igor] Павлович [P.] Воронин [Voronin]

Science degree:

Ph.D. (Techn.)

Workplace

Industrial Electronics Dept., NRU MPEI

Occupation

Assistant Professor

References

1. Воронин П.А. Силовые полупроводниковые ключи: семейства, характеристики, применение. М.: ДМК Пресс, 2015.

2. Bahman A.S., Blaabjerg F., Dutta A., Mantooth A. Electrical Parasitics and Thermal Modeling for Optimized Layout Design of High Power SiC Modules // IEEE Appl. Power Electronics Conf. and Exposition. Long Beach (USA), 2016. Pp. 3012—3019.

3. Muehlfeld O., Fuchs F. Comprehensive Optimization Method for Thermal Properties and Parasitics in Power Modules // IEEE Trans. Power Electronics. 2010. V. 25. Pp. 2266—2271.

4. Muehlfeld O., Fuchs F. Design Strategies for Stray Inductance Optimized Wire-bond Power Modules // Proc. Intern. Exhibition and Conf. Power Electronics, Intelligent Motion and Power Quality. Nuremberg, 2010. Pp. 244—248.

5. Callegaro A.D. e. a. Bus Bar Design for High-power Inverters // IEEE Trans. Power Electron. 2018. V. 33. No. 3. Pp. 2354—2367.

6. Zhang N., Wang S., Zhao H. Develop Parasitic Inductance Model for the Planar Bus Bar of an IGBT H-bridge in a Power Inverter // IEEE Trans. Power Electron. 2015. V. 30 (12). Pp. 6924—6933.

7. Foerster S., Lindemann A. Combined Optimization of Thermal Behavior and Electrical Parasitics in Power Semiconductor Components // Proc. 13th European Conf. Power Electronics and Appl. 2009. Pp. 1—10.

8. Caponet M.C., Profumo F., De Doncker R., Tenconi A. Low Stray Inductance Busbar Design and Construction for Good EMC Performance in Power Electronic Circuits // IEEE Trans on Power Electron. 2004. V. 17 (2). Pp. 225—231.

9. Botgatin E. Design Rules for Microstrip Capacitance // IEEE Trans Components, Hybrids, and Manufacturing Technol. 1988. V. 11. Pp. 253—259.

10. Воронин И.П. Интегральный силовой модуль IGBT для трехуровневых инверторов напряжения с повышенной эффективностью преобразования электроэнергии // Силовая электроника. 2013. № 6. С. 20—26.
---
Для цитирования: Воронин П.А., Воронин И.П. Исследование температурного поля и оптимизация топологии электрических соединений с целью улучшения показателей миниатюризации силовой интегральной схемы // Вестник МЭИ. 2018. № 2. С. 59—64. DOI: 10.24160/1993-6982-2018-2-59-64.
#
1.Voronin P.A. Silovye Poluprovodnikovye Klyuchi: Semeystva, Kharakteristiki, Primenenie. M.: DMK Press, 2015. (in Russian).

2. Bahman A.S., Blaabjerg F., Dutta A., Mantooth A. Electrical Parasitics and Thermal Modeling for Optimized Layout Design of High Power SiC Modules. IEEE Appl. Power Electronics Conf. and Exposition. Long Beach (USA), 2016:3012—3019.

3. Muehlfeld O., Fuchs F. Comprehensive Optimization Method for Thermal Properties and Parasitics in Power Modules. IEEE Trans. Power Electronics. 2010;25:2266—2271.

4. Muehlfeld O., Fuchs F. Design Strategies for Stray Inductance Optimized Wire-bond Power Modules. Proc. Intern. Exhibition and Conf. Power Electronics, Intelligent Motion and Power Quality. Nuremberg, 2010:244—248.

5. Callegaro A.D. e. a. Bus Bar Design for High-power Inverters. IEEE Trans. Power Electron. 2018;33;3:2354—2367.

6. Zhang N., Wang S., Zhao H. Develop Parasitic Inductance Model for the Planar Bus Bar of an IGBT H-bridge in a Power Inverter. IEEE Trans. Power Electron. 2015;30 (12):6924—6933.

7. Foerster S., Lindemann A. Combined Optimization of Thermal Behavior and Electrical Parasitics in Power Semiconductor Components. Proc. 13th European Conf. Power Electronics and Appl. 2009:1—10.

8. Caponet M.C., Profumo F., De Doncker R., Tenconi A. Low Stray Inductance Busbar Design and Construction for Good EMC Performance in Power Electronic Circuits. IEEE Trans on Power Electron. 2004;17 (2):225—231.

9. Botgatin E. Design Rules for Microstrip Capacitance. IEEE Trans Components, Hybrids, and Manufacturing Technol. 1988;11:253—259.

10. Voronin I.P. Integral'nyy Silovoy Modul' IGBT dlya Trekhurovnevykh Invertorov Napryazheniya s Povyshennoy Effektivnost'yu Preobrazovaniya Elektroenergii. Silovaya Elektronika. 2013;6:20—26. (in Russian).
---
For citation: Voronin P.A., Voronin I.P. Studying the Temperature Field in a Power Integrated Circuit and Optimizing the Topology of Its Electrical Connections for Improving Its Miniaturization Parameters. MPEI Vestnik. 2018;2:59—64. (in Russian). DOI: 10.24160/1993-6982-2018-2-59-64.
Published
2019-02-05
Section
Electrical Engineering (05.09.00)