A Modified Coupled Mode Equation For Parallel Dielectric Waveguides

  • Андрей [Andrey] Сергеевич [S.] Андреев [Andreev]
  • Владислав [Vladislav] Викторович [V.] Крутских [Krutskikh]
Keywords: coupled mode equation, multimode dielectric waveguide, coupling coefficients, non-orthogonal formulation

Abstract

Despite the fact that the coupled mode theory is widely used for practical applications, the majority of researchers still employ the conventional (or so-called orthogonal) formulation of this theory. It is shown that this formulation lacks accuracy and yields erroneous results in the case of strongly coupled modes. Those who model compact devices using the effects of distributed coupling between dielectric waveguides or analyze parasitic energy transfer phenomena in systems with tightly packed dielectric waveguides would inevitably encounter significant deviation of theoretical predictions from reality. A modified (or non-orthogonal) formulation is proposed which yields better accuracy. Previously a preliminary corollary of the theory of waveguide excitation by arbitrary sources was used for deriving the coupled mode equation in a non-orthogonal formulation, and the sought equation has been derived proceeding from these results. Despite the fact that such approach allows the obtained results to be interpreted in the most general physical manner, it seems to be excessive for deriving the equation for coupling of parallel dielectric waveguides; in addition, the approach is difficult to analyze and check. Prior to use this approach, it is necessary to determine the equivalent currents induced by the fields for each individual waveguide (from the associated modes of adjacent waveguides). The article presents a method for deriving the coupled mode equation in the non-orthogonal formulation based on using solely Maxwell's equations and an ansatz involving the sum of modes of individual waveguides and initially unknown additional fields related to the mutual influence of closely located waveguides. The expressions for these fields in terms of the fields of waveguide modes and the additional coefficients of volume and surface coupling are obtained. In the considered case, the discrete spectrum of modes was adopted instead of the continuous one to simplify the derivation and owing to its accessibility for experimental analysis.

Information about authors

Андрей [Andrey] Сергеевич [S.] Андреев [Andreev]

Workplace

Fundamentals of Radio Engineering Dept., NRU MPEI

Occupation

Ph.D.-student

Владислав [Vladislav] Викторович [V.] Крутских [Krutskikh]

Science degree:

Ph.D. (Techn.)

Workplace

Fundamentals of Radio Engineering Dept., NRU MPEI

Occupation

Assistant Professor

References

1. Миллер С. Теория связанных волн и ее применение к волноводам // Волноводные линии передач с малыми потерями. М.: Изд-во иностр. лит-ры, 1960. С. 139.

2. Truong C. D. e. a. A Broadband Second-order Mode Synthesizer Based on an 3×1 Multimode Interference Coupler and Phase Shifters Using Silicon Waveguides // IEEE 6 Intern. Conf. Communications and Electronics. 2016. Pp. 397—402.

3. Ahmed R. e. a. Multimode Waveguide Based Directional Coupler // Optics Communications. 2016. V. 370. Pp. 183—191.

4. Shalaby H.M.H. Bi-directional Coupler as a Mode- division Multiplexer/Demultiplexer // J. Lightwave Techn. 2016. V. 34. No. 15. Pp. 3633—3640.

5. Dai D., Wang J., Shi Y. Silicon Mode (De) Multiplexer Enabling High Capacity Photonic Networks- on-chip with a Single-Wavelength-Carrier Light // Optics Lett. 2013. V. 38. No. 9. Pp. 1422—1424.

6. Luo Y. e. a. Integrated Dual-mode 3 dB Power Coupler Based on Tapered Directional Coupler // Sci. Rep. 2016. V. 6. Pp. 23516.

7. Zhao W.K. e. a. Horizontal Directional Coupler Formed with Waveguides of Different Heights for Mode- division Multiplexing // IEEE Photonics J. 2017. V. 9. No. 5. Pp. 1—9.

8. Zhang K., Li D. Electromagnetic Theory for Microwaves and Optoelectronics.Springer Sci. & Business Media, 2013.

9. Little B.E., Huang W.P. Coupled-mode Theory for Optical Waveguides // Progress in Electromagnetics Research. 1995. V. 10. Pp. 217—270.

10. Pease M.C. Generalized Coupled Mode Theory // J. Appl. Phys. 1961. V. 32. No. 9. Pp. 1736—1743.

11. Yariv A. Coupled-mode Theory for Guided-wave Optics // IEEE J. of Quantum Electronics. 1973. V. 9. No. 9. Pp. 919—933.

12. Hardy A., Streifer W. Coupled Mode Theory of Parallel Waveguides // J. Lightwave Technology. 1985. V. 3. No. 5. Pp. 1135—1146.

13. Ohke T., Tomabechi Y., Matsumura K. Coupled Mode Theory of Parallel Multi- and Single-mode Dielectric Waveguide // Electronics and Communications in Japan (Pt. II. Electronics). 1989. V. 72. No. 2. Pp. 91—100.

14. Барыбин А. Электродинамика волноведущих структур. Теория возбуждения и связи волн. М: Физ-матлит, 2007.
---
Для цитирования: Андреев А.С., Крутских В.В. Модифицированное уравнение связанных мод параллельных диэлектрических волноводов // Вестник МЭИ. 2018. № 1. С. 112—118. DOI: 10.24160/1993-6982-2018-1-112-118.
#
1. Miller S. Teoriya svyazannykh Voln i ee Primenenie k Volnovodam. Volnovodnye Linii Peredach s Malymi Poteryami. M.: Izd-vo Inostr. Lit-ry, 1960. (in Russian).

2. Truong C. D. e. a. A Broadband Second-order Mode Synthesizer Based on an 3×1 Multimode Interference Coupler and Phase Shifters Using Silicon Waveguides. IEEE 6 Intern. Conf. Communications and Electronics. 2016:397—402.

3. Ahmed R. e. a. Multimode Waveguide Based Directional Coupler. Optics Communications. 2016;370: 183—191.

4. Shalaby H.M.H. Bi-directional Coupler as a Mode- division Multiplexer/Demultiplexer. J. Lightwave Techn. 2016;34;15:3633—3640.

5. Dai D., Wang J., Shi Y. Silicon Mode (De) Multiplexer Enabling High Capacity Photonic Networks- on-chip With A Single-Wavelength-Carrier Light. Optics Letters. 2013;38; 9:1422—1424.

6. Luo Y. e. a. Integrated Dual-mode 3 dB Power Coupler Based on Tapered Directional Coupler. Sci. Rep. 2016;6:23516.

7. Zhao W.K. e. a. Horizontal Directional Coupler Formed with Waveguides of Different Heights for Mode- division Multiplexing. IEEE Photonics J. 2017;9;5:1—9.

8. Zhang K., Li D. Electromagnetic Theory for Microwaves and Optoelectronics.Springer Sci. & Business Media, 2013.

9. Little B.E., Huang W.P. Coupled-mode Theory for Optical Waveguides. Progress in Electromagnetics Research. 1995;10:217—270.

10. Pease M.C. Generalized Coupled Mode Theory. J. Appl. Phys. 1961;32;9:1736—1743.

11. Yariv A. Coupled-mode Theory for Guided-wave Optics. IEEE J. of Quantum Electronics. 1973;9; 9:919—933.

12. Hardy A., Streifer W. Coupled Mode Theory of Parallel Waveguides. J. Lightwave Technology. 1985;3;5:1135—1146.

13. Ohke T., Tomabechi Y., Matsumura K. Coupled Mode Theory of Parallel Multi- and Single-mode Dielectric Waveguide. Electronics and Communications in Japan (Pt. II. Electronics). 1989;72;2:91—100.

14. Barybin A. Elektrodinamika Volnovedushchikh Struktur. Teoriya Vozbuzhdeniya i Svyazi Voln. M: Fizmatlit, 2007. (in Russian).
---
For citation: Andreev A.S., Krutskikh V.V. A Modifi ed Coupled Mode Equation For Parallel Dielectric Waveguides. MPEI Vestnik. 2018;1:112—118. (in Russian). DOI: 10.24160/1993-6982-2018-1-112-118.
Published
2019-01-29
Section
Radio Engineering and Communications (05.12.00)