Experience Gained from Setting Up Cycle Chemistry with the Use of Film-Forming Amines at Thermal Power Stations Equipped with Combined-Cycle Plants

  • Тамара [Tamara] Ивановна [I.] Петрова [Petrova]
  • Ольга [Olga] Вадимовна [V.] Егошина [Yegoshina]
  • Наталия [Nataliya] Алексеевна [A.] Большакова [Bol'shakova]
  • Виталий [Vitaliy] Олегович [O.] Яровой [Yarovoy]
  • Светлана [Svetlana] Станиславовна [S.] Рыбина [Rybina]
Keywords: thermal power station, combined-cycle plant, heat recovery steam generator, cycle chemistry, film-forming amine, cycle chemistry monitoring systems

Abstract

The list of thermal power stations equipped with combined-cycle plants (CCPs) at which chelamine is used as a correcting reagent is presented. The advantages of this reagent and advisability of using it are pointed out. The main drawbacks of cycle chemistries based on film-forming amines are formulated, namely, low pH values in the low-pressure boiler water with high pH values in superheated low-pressure steam and high concentrations of ammonia in superheated steam. The effect the concentration of a complex reagent has on the water and steam quality parameters during the operation of a 110 MW combined-cycle unit in its nominal mode is outlined. Measures taken for optimally conducting the cycle chemistry with metering complex reagents as applied to a CCP are considered. The results from regime-adjustment tests of the cycle chemistry of a heat recovery steam generator with metering a complex reagent are described. It has been revealed that in case of using Type 906 H chelamine, the specific electrical conductivity of the H-cation sample of high-pressure superheated steam exceeds the values prescribed by the temporary regulations, and that the pH of the low-pressure circuit's boiler water is at the lower limit of the range prescribed by these regulations. A transition for using Type BRW 150H reagent, which is characterized by a lower distribution ratio between boiling water and saturated steam, has been done. The results obtained from the regime-adjustment tests in the cases of using chelamine of types 906H and BRW 150H were subjected to a comparative analysis. It has been revealed that the replacement of the chelamine type (with the reagent concentration remaining the same) resulted in a higher concentration of sodium, higher conductivity of the H-cation sample, and higher pH value of low-pressure feed water. It has been shown that with a lower concentration of Type BRW 150H reagent, the main quality indicators of feed water, boiler water, and low- and high-pressure steam are within the their standardized ranges and have stable values. It is pointed out that the specific consumption of Type BRW 150H reagent is a factor of 2 lower than in case of metering Type 906H reagent.

Information about authors

Тамара [Tamara] Ивановна [I.] Петрова [Petrova]

Science degree:

Dr. Sci (Techn.)

Workplace

Theoretical Bases of Heat Engineering named after M.P. Vukalovich Dept., NRU MPEI

Occupation

Professor

Ольга [Olga] Вадимовна [V.] Егошина [Yegoshina]

Science degree:

Ph.D. (Techn.)

Workplace

Theoretical Bases of Heat Engineering named after M.P. Vukalovich Dept., NRU MPEI

Occupation

Assistant Professor

Наталия [Nataliya] Алексеевна [A.] Большакова [Bol'shakova]

Workplace

Theoretical Bases of Heat Engineering named after M.P. Vukalovich Dept., NRU MPEI

Occupation

Assistant

Виталий [Vitaliy] Олегович [O.] Яровой [Yarovoy]

Workplace

Theoretical Bases of Heat Engineering named after M.P. Vukalovich Dept., NRU MPEI

Occupation

Assistant

Светлана [Svetlana] Станиславовна [S.] Рыбина [Rybina]

Workplace

Chemical Dept. of the of Vologda Сombined Heat and Power

Occupation

Chief of the Dept.

References

1.Ларин Б.М. Анализ результатов автоматического химического контроля качества водного теплоносителя барабанного котла Ивановской ТЭС-3 // Теплоэнергетика. 2012. № 10. С. 65—70.

2. Егошина О.В., Воронов В.Н, Назаренко М.П. Современное состояние систем химико-технологического мониторинга на тепловых станциях на основе опыта МЭИ и НПЦ «Элемент» // Теплоэнергетика. 2014. № 3. С. 39—45.

3. Ларин Б.М. Состояние технологии подготовки водного рабочего тела на отечественных ТЭС // Теплоэнергетика. 2014. № 1. С. 75—80.

4. Петрова Т.И., Фурунжиева А.В. Использование хеламина на тепловых электростанциях с барабанными котлами // Энергосбережение и водоподготовка. 2004. № 1. С. 3—9.

5. Суслов С.Ю. и др. Комплексные реагенты на основе аминов // Теплоэнергетика. 2017. № 3. С. 92—96.

6. Петрова Т.И. и др. Влияние физико-химических параметров на переход аминов из кипящей воды в насыщенный пар // Вестник МЭИ. 2013. № 4. С. 36—41.

7. Kelm W. Use of an Organic Conditioning Chemical in Cycle with Drum-Type Boilers in the PCK Schwedt. Power Plant Chemistry // Feedwater and Boiler Water Treatment in Industrial, Co-Generation, and Refuse Incineration Plants and Units with Heat Recovery Steam Generators. Mannheim, 2000. No. 6.

8. Суслов С.Ю. и др. Опыт ведения водно-химического режима с применением хеламина на энергоблоках ПГУ-39 Сочинской ТЭС // Теплоэнергетика. 2012. № 7. С. 15—21.

9. Kazno Marugame, Li-Bin Niu, Hiroshi Takaku. Behavior of Magnettite Crown from Amine-Carboxylate and Amine-Aqueous Solutions // Power Plant Chem. 2005. V. 7(10).
---
Для цитирования: Петрова Т.И., Егошина О.В., Большакова Н.А., Яровой В.О., Рыбина С.С. Опыт организации водно-химического режима с применением пленкообразующих аминов на тепловых электрических станциях с парогазовыми установками // Вестник МЭИ. 2017. № 6. С. 44—53. DOI: 10.24160/1993-6982-2017-6-44-53.
#
1. Larin B.M. Analiz Rezul'tatov Avtomaticheskogo Himicheskogo Kontrolya Kachestva Vodnogo Teplonosi- telya Barabannogo Kotla Ivanovskoy TES-3. Teploenergetika. 2012;10:65—70. (in Russian).

2. Egoshina O.V., Voronov V.N, Nazarenko M.P. Sovremennoe Sostoyanie Sistem Himiko-tekhnologiches- kogo Monitoringa na Teplovyh Stantsiyah na Osnove Opyta MPEI i NPTS «Element». Teploenergetika. 2014;3:39—45. (in Russian).

3. Larin B.M. Sostoyanie Tekhnologii Podgotovki Vodnogo Rabochego Tela na Otechestvennyh TES. Teploenergetika. 2014;1:75—80. (in Russian).

4. Petrova T.I., Furunzhieva A.V. Ispol'zovanie Helamina na Teplovyh Elektrostantsiyah s Barabannymi Kotlami. Energosberezhenie i Vodopodgotovka. 2004;1:3—9. (in Russian).

5. Suslov S.Yu. i dr. Kompleksnye Reagenty na Osnove Aminov. Teploenergetika. 2017;3:92—96. (in Russian).

6. Petrova T.I. i dr. Vliyanie Fiziko-himicheskih Parametrov na Perekhod Aminov iz Kipyashchey Vody v Nasyshchennyy Par. Vestnik MPEI. 2013;4:36—41. (in Russian).

7. Kelm W. Use of an Organic Conditioning Chemical in Cycle with Drum-Type Boilers in the PCK Schwedt. Power Plant Chemistry. Feedwater and Boiler Water Treatment in Industrial, Co-Generation, and Refuse Incineration Plants and Units with Heat Recovery Steam Generators. Mannheim, 2000;6.

8. Suslov S.Yu. i dr. Opyt Vedeniya Vodno-himichesko- go Rezhima s Primeneniem Helamina na Energoblokah PGU-39 Sochinskoy TES. Teploenergetika. 2012;7:15—21. (in Russian).

9. Kazno Marugame, Li-Bin Niu, Hiroshi Takaku. Behavior of Magnettite Crown from Amine-Carboxylate and Amine-Aqueous Solutions. Power Plant Chem. 2005;7(10).
---
For citation: Petrova T.I, Yegoshina O.V., Bol'shakova N.A., Yarovoy V.O., Rybina S.S. Experience Gained from Setting Up Cycle Chemistry with the Use of Film-Forming Amines at Thermal Power Stations Equipped with Combined-Cycle Plants. MPEI Vestnik. 2017; 6:44—53. (in Russian). DOI: 10.24160/1993-6982-2017-6-44-53.
Published
2019-01-18
Section
Power engineering (05.14.00)