The Possibilities of Increasing Critical Heat Fluxes for Boiling on Surfaces with Porous Coatings (a Review)

  • Людмила [Lyudmila] Александровна [А.] Сукомел [Sukomel]
  • Виктор [Viktor] Владимирович [V.] Ягов [Yagov]
Keywords: pool boiling, burnout, porous coatings, nanofluids, critical heat fluxes, dry spot

Abstract

A review of recent experimental investigations into burnout at porous surfaces under natural convection conditions (during pool boiling) is presented. Despite a generally positive progress that has been made in the technical solutions aimed at increasing critical heat fluxes, it is still difficult to point out any prevailing method for shaping heat-transfer surfaces. As regards boiling on macroscale heat-transfer surfaces (which is exactly the one of practical interest), the use of nanoparticle coatings has no advantages in comparison with other ways of heat transfer enhancement. In a number of studies, the gain from using nanoporous coatings applied on the base surface (in terms of increasing the critical heat flux) was hardly more than 10%. At the same time, the use of a deforming cutting technology made it possible to increase the surface area up to 8.3 times and the critical heat flux values up to 4.1 times. Attempts to interpret the obtained experimental data theoretically encounter certain difficulties stemming from the fact that burnout depends on the porous layer texture and on its key geometrical features. It follows from the analytical part of the reviewed publications that the mechanism governing the enhancement of boiling heat transfer on porous surfaces has not been fully understood. Attempts to obtain a universal correlation for calculating critical heat fluxes will hardly meet with success because the mechanisms governing burnout are in all likelihood different for different types of porous structures. On the other hand, studies carried out on structured surfaces with a geometrically regular morphology may be expected to yield useful results for revealing the boiling mechanisms. The article presents an approximate analysis of burnout for a microfinned surface with fins having the shape of microcolumns with a square cross-section constant over the column height. Central to the analysis is an approach linking the burnout with irreversible growth of dry spots area on the heated surface. It is shown that with the applied burnout model it becomes possible in principle to explain — both in qualitative and quantitative manner — the effect the heated surface microstructure has on the onset of burnout during the boiling of liquids under natural convection (pool boiling) conditions.

Information about authors

Людмила [Lyudmila] Александровна [А.] Сукомел [Sukomel]

Science degree:Ph.D. (Techn.)

Workplace: Engineering Thermophysics Dept., NRU MPEI

Occupation: Senior Researcher

Виктор [Viktor] Владимирович [V.] Ягов [Yagov]

Science degree: Dr.Sci. (Techn.)

Workplace: Engineering Thermophysics Dept., NRU MPEI

Occupation: Professor

References

1. Кутателадзе С.С. Гидромеханическая модель кризиса теплообмена в кипящей жидкости при свободной конвекции // ЖТФ. 1950. Т. 20. Вып. 11. С. 1389—1392.

2. Costello C.P., Frea W.J. A Salient Non- hydrody-namic Effect on Pool Boiling Burnout of Small Semicylindrical Heaters // Proc. 6th Nat. Asme-Aiche Heat Transfer Conf. Boston, 1963.

3. Ковалев С.А., Соловьев С.Л. Испарение и конденсация в тепловых трубах. М.: Наука, 1989.

4. Bergles A.E. Enhancement of Pool Boiling // Int. J. Refrigeration. 1997. V. 20 (8). Pp. 545—551.

5. Смирнов Г.Ф., Цой А.Д. Теплообмен при парообразовании в капиллярах и капиллярно-пористых структурах. М.: Изд-во МЭИ, 1999.

6. Manglik R.M. Heat Transfer Enhancement // Heat Transfer Handbook. John Wiley & Sons., 2003. Ch. 14. Pp. 1029—1130.

7. Parker J.L., El-Genk M.S. Pool Boiling of Dielectric Liquids on Porous Graphite and Extended Copper Surfaces // Tech. Rep. No UNM-ISNPS-1-2008 Institute for Space and Nuclear Power Studies University of New Mexico. 2008.

8. Chen Li, Peterson G.P. Geometric Effects on Critical Heat Flux on Horizontal Microporous Coatings // J. Thermophysics and Heat Transfer. 2010. V. 24. No 3. Pр. 449—455.

9. Lu Y.-W., Kandlikar S.G. Nanoscale surface Modification Techniques for Pool Boiling Enhancement — a Critical Review and Future Directions // Proc. ASME 2010 3rd Joint US-European Fluids Eng. Summer Meeting and 8th Intern. Conf. on Nanochannels, Microchannels and Minichannels. Montreal (Canada), 2010. Рp. 1—12.

10. Lu Y.-W., Kandlikar S.G. Nanoscale Surface Modification. Techniques for Pool Boiling Enhancement — A Critical Rev. and Future Directions // Heat Transfer Eng. 2011. V. 32. No. 10. Pp. 827—842.

11. Ahn H.S., Kim M.H. A Review on Critical Heat Flux Enhancement with Nanofluids and Surface Modification // Trans. ASME J. Heat Transfer. 2012. V. 134. No. 2. Pp. 1—13.

12. Sihna-Ray J.S., Yarin A.L. Pool boiling On Nano- Textured Surfaces // Intern. J. Heat and Mass Transfer. 2013. V. 62. Pp. 99—111.

13. Attinger D. e. a. Surface Engineering for Phase Change Heat Transfer: A Review // MRS Energy and Sustainability. 2014. Pp. 1—85.

14. Matre G.A., Karwande R.L. A Review of Critical Heat Flux Enhancement in Nucleate Pool Boiling of Nanofluid // Intern. J. Eng. Sci. & Research Techn. 2015. Рp. 323—329.

15. Kim, T.Y., Weibel, J.A., Garimella SV. A Free- Particles-Based Technique for Boiling Heat Transfer Enhancement in a Wetting Liquid // CTRC Research Publ. 2014. V. 224. Pp. 1—29.

16. Sarangi S., Weibel J.A., Garimella SV. Effect of Particle Size on Surface-Coating Enhancement of Pool Boiling Heat Transfer // CTRC Research Publ. 2015. V. 250. Pp. 1—29.

17. Гортышов Ю.Ф. и др. Кипение воды на микро- структурированных поверхностях // Труды Академ- энерго. 2012. № 1. С. 14—31.

18. Минаков А.В., Пряжников М.И. Рудяк В.Я. Исследование критической плотности теплового потока при кипении наножидкостей // Фундаментальные основы МЭМС- и нанотехнологий: Труды V Всеросс. конф. Новосибирск. 2015. Вып. 5. Т. 2. С. 39—42.

19. Пряжников М.И., Минаков А.В., Рудяк В.Я. Влияние диаметра, материала наночастиц, размера нагревателя на критическую плотность теплового потока при кипении наножидкостей // Письма в ЖТФ. 2015. Т. 41. Вып. 18. С. 53—59.

20. Бондаренко Б.И. и др. Наножидкости для энер- гетики: влияние стабилизации на критический тепловой поток при кипении // Письма в ЖТФ. 2012. Т. 38. Вып. 18. С. 68—78.

21. Кузма–Кичта Ю.А. и др. Исследование крае- вых углов и кризиса кипения на поверхности с искусственным нанорельефом // Тепловые процессы в технике. 2013. № 7. С. 290—294.

22. Фокин Б.С. и др. Критический тепловой поток при кипении водной дисперсии наночастиц // Письма в ЖТФ. 2009. Т. 35. Вып. 10. С. 1—5.

23. Dhillon N.S., Buongiorno J., Varanasi K.K. Critical Heat Flux Maxima During Boiling Crisis on Textured Surfaces // Nature Communications. 2015. No. 6. P. 8247.

24. Park S.D., Bang I.C. Experimental Study of a Universal CHF Enhancement Mechanism in Nanofluids Using Hydrodynamic Instability // Intern. J. Heat and Mass Transfer. 2014. V. 70. Pp. 844—850.

25. Truong B. e. a. Stabilizer Effect on CHF and Boiling Heat Transfer Coefficient of Alumina/Water Nanofluids // Intern. J. Heat and Mass Transfer. 2012. V. 55. Pp.1941—1946.

26. Kim S.J., Bang I.C., Buongiorno J., Hu L.W. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux // Int. J. Heat and Mass Transfer. 2007. V. 50. Pр. 4105—4116.

27. Ji Min Kim e. a. Effect of a Graphene Oxide Coating Layer on Critical Heat Flux Enhancement under Pool Boiling // Intern. J. Heat and Mass Transfer. 2014. V. 77. Pp. 919—927.

28. Ahn H.S., Kim M.H. The Boiling Phenomenon of Alumina Nanofluid Near Critical Heat Flux // Intern. J. Heat and Mass Transfer. 2013. V. 62. Pp. 718—728.

29. Mori S., Aznam S.M., Okuyama K. Enhancement of the Critical Heat Flux in Saturated Pool Boiling of Water By Nanoparticle-Coating and a Honeycomb Porous Plate // Intern. J. Heat and Mass Transfer. 2015. V. 80. Pp. 1—6.

30. Ahn H.S., Sathyamurthi V., Banerjee D. Pool Boiling Experiments on a Nano-Structured Surface // IEEE Trans. Components And Packaging Technologies. 2009. V. 32. No 1. Pp. 156—165.

31. Malyshenko S.P. Characteristics of Heat Transfer with Boiling on Surfaces with Porous Coatings // Thermal Eng. 1991. V. 38. No 2. Pp. 81—88.

32. Yagov V.V. Is A Crisis in Pool Boiling Actually a Hydrodynamic Phenomenon? // Intern. J. Heat and Mass Transfer. 2014. V. 73. Pp. 265—273.

33. Yagov V.V. Crisis in Pool Boiling: Alternative to Hydrodynamic Approach // Proc. 15th International Heat Transfer Conf. Kyoto (Japan). 2014. Pp. IHTC15—9592.

34. Ягов В.В. Механизм кризиса кипения в боль- шом объеме // Теплоэнергетика. 2003. № 3. С. 2—10.

35. Yagov V.V. Critical Heat Flux Prediction for Pool Boiling of Binary Mixtures // Chemical Eng. Research and Design. 2004. V. 82. Pp. 457—461.

36. Theofanous T.G. e. a. The Boiling Crisis Phenomenon. Pt. II: Dryout Dynamics and Burnout // Experimental Thermal and Fluid Sci. 2002. V. 26. Pp. 793—810.

37. Franco A., Latrofa E.M., Yagov V.V. Heat Transfer Enhancement in Pool Boiling of a Refrigerant Fluid with Wire Nets Structures // Exp. Thermal and Fluid Sci. 2006. V. 30. Pp. 263—275.
---
Для цитирования: Сукомел Л.А., Ягов В.В. Возможности повышения критических тепловых потоков при кипении на поверхностях с пористыми покрытиями (обзор) // Вестник МЭИ. 2017. № 4. С. 55—67. DOI: 10.24160/1993-6982-2017-4-55-67.
#
1. Kutateladze S.S. Gidromekhanicheskaia Model Krizisa Teploobmena v Kipiashchei Zhidkosti pri Svobodnoi Konvektsii. ZhTF. 1950.;20;11:1389—1392. (in Russian).

2. Costello C.P., Frea W.J. A Salient Non- hydrody-namic Effect on Pool Boiling Burnout of Small Semicylindrical Heaters. Proc. 6th Nat. Asme-Aiche Heat Transfer Conf. Boston, 1963.

3. Kovalev S.A., Solovev S.L. Isparenie i Kondensatsiia v Teplovykh Trubakh. M.: Nauka, 1989. (in Russian).

4. Bergles A.E. Enhancement of Pool Boiling. Int. J. Refrigeration. 1997;20 (8):545—551.

5. Smirnov G.F., Tsoi A.D. Teploobmen pri Paroobrazovanii v Kapilliarakh i Kapilliarno-poristykh Strukturakh. M.: Izd-vo MPEI. 1999. (in Russian).

6. Manglik R.M. Heat Transfer Enhancement. Heat Transfer Handbook. John Wiley & Sons., 2003;14:1029—1130.

7. Parker J.L., El-Genk M.S. Pool Boiling of Dielectric Liquids on Porous Graphite and Extended Copper Surfaces. Tech. Rep. No UNM-ISNPS-1-2008 Institute for Space and Nuclear Power Studies University of New Mexico. 2008.

8. Chen Li, Peterson G.P. Geometric Effects on Critical Heat Flux on Horizontal Microporous Coatings. J. Thermophysics and Heat Transfer. 2010;24;3:449—455.

9. Lu Y.-W., Kandlikar S.G. Nanoscale surface Modification Techniques for Pool Boiling Enhancement — a Critical Review and Future Directions. Proc. ASME 2010 3rd Joint US-European Fluids Eng. Summer Meeting and 8th Intern. Conf. on Nanochannels, Microchannels and Minichannels. Montreal (Canada), 2010:1—12.

10. Lu Y.-W., Kandlikar S.G. Nanoscale Surface Modification. Techniques for Pool Boiling Enhancement — A Critical Rev. and Future Directions. Heat Transfer Eng. 2011;32; 10:827—842.

11. Ahn H.S., Kim M.H. AReview on Critical Heat Flux Enhancement with Nanofluids and Surface Modification. Trans. ASME J. Heat Transfer. 2012;134;2:1—13

12. Sihna-Ray J.S., Yarin A.L. Pool boiling On Nano- Textured Surfaces. Intern. J. Heat and Mass Transfer. 2013;62:99—111.

13. Attinger D. e. a. Surface Engineering for Phase Change Heat Transfer: A Review. MRS Energy and Sustainability. 2014:1—85.

14. Matre G.A., Karwande R.L. A Review of Critical Heat Flux Enhancement in Nucleate Pool Boiling of Nanofluid. Intern. J. Eng. Sci. & Research Techn. 2015:323—329.

15. Kim, T.Y., Weibel, J.A., Garimella SV. A Free- Particles-Based Technique for Boiling Heat Transfer Enhancement in a Wetting Liquid. CTRC Research Publ. 2014;224: 1—29.

16. Sarangi S., Weibel J.A., Garimella SV. Effect of Particle Size on Surface-Coating Enhancement of Pool Boiling Heat Transfer. CTRC Research Publ. 2015;250:1—29

17. Gortyshov Iu.F. i dr. Kipenie Vody na Mikrostrukturirovannykh Poverkhnostiakh. Trudy Akademenergo. 2012;1:14—31. (in Russian).

18. Minakov A.V., Priazhnikov M.I. Rudiak V.Ia. Issledovanie Kriticheskoi Plotnosti Teplovogo Potoka pri Kipenii Nanozhidkostei. Fundamentalnye Osnovy Mems- i Nanotekhnologii: Trudy V Vseross. Konf. Novosibirsk, 2015;5;2:39—42. (in Russian).

19. Priazhnikov M.I., Minakov A.V., Rudiak V.Ia. Vliianie Diametra, Materiala Nanochastits, Razmera Nagrevatelia na Kriticheskuiu Plotnost Teplovogo Potoka pri Kipenii Nanozhidkostei. Pisma v ZhTF. 2015;41;18: 53—59. (in Russian).

20. Bondarenko B.I. i dr. Nanozhidkosti dlia Energetiki: Vliianie Stabilizatsii na Kriticheskii Teplovoi Potok pri Kipenii. Pisma v ZhTF. 2012;38;18:68—78. (in Russian).

21. Kuzma-Kichta Iu.A. i dr. Issledovanie Kraevykh Uglov i Krizisa Kipeniia na Poverkhnosti s Iskusstvennym Nanorelefom. Teplovye Protsessy v Tekhnike. 2013;7: 290—294. (in Russian).

22. Fokin B.S. i dr. Kriticheskii Teplovoi Potok pri Kipenii Vodnoi Dispersii Nanochastits. Pisma v ZhTF. 2009;35;10: 1—5. (in Russian).

23. Dhillon N.S., Buongiorno J., Varanasi K.K. Critical Heat Flux Maxima During Boiling Crisis on Textured Surfaces. Nature Communications. 2015;6:8247.

24. Park S.D., Bang I.C. Experimental Study of a Universal CHF Enhancement Mechanism in Nanofluids Using Hydrodynamic Instability. Intern. J. Heat and Mass Transfer. 2014;70:844—850.

25. Truong B. e. a. Stabilizer Effect on CHF and Boiling Heat Transfer Coefficient of Alumina/Water Nanofluids. Intern. J. Heat and Mass Transfer. 2012;55:1941—1946.

26. Kim S.J., Bang I.C., Buongiorno J., Hu L.W. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux Int. J. Heat and Mass Transfer. 2007;50:4105—4116.

27. Ji Min Kim e. a. Effect of a Graphene Oxide Coating Layer on Critical Heat Flux Enhancement under Pool Boiling. Intern. J. Heat and Mass Transfer. 2014;77:919—927.

28. Ahn H.S., Kim M.H. The Boiling Phenomenon of Alumina Nanofluid Near Critical Heat Flux. Intern. J. Heat and Mass Transfer. 2013; 62.:718—728.

29. Mori S., Aznam S.M., Okuyama K. Enhancement of the Critical Heat Flux in Saturated Pool Boiling of Water By Nanoparticle-Coating and a Honeycomb Porous Plate. Intern. J. Heat and Mass Transfer. 2015;80:1—6.

30. Ahn H.S., Sathyamurthi V., Banerjee D. Pool Boiling Experiments on a Nano-Structured Surface. IEEE Trans. Components And Packaging Technologies. 2009;32;1:156—165.

31. Malyshenko S.P. Characteristics of Heat Transfer with Boiling on Surfaces with Porous Coatings. Thermal Eng. 199;38;2:81—88.

32. Yagov V.V. Is A Crisis in Pool Boiling Actually a Hydrodynamic Phenomenon?. Intern. J. Heat and Mass Transfer. 2014;73:265—273.

33. Yagov V.V. Crisis in Pool Boiling: Alternative to Hydrodynamic Approach. Proc. 15th International Heat Transfer Conf. Kyoto (Japan), 2014:IHTC15—9592.

34. Iagov V.V. Mekhanizm krizisa kipeniia v bolshom obieeme. Teploenergetika. 2003;3:2—10. (in Russian).

35. Yagov V.V. Critical Heat Flux Prediction for Pool Boiling of Binary Mixtures. Chemical Eng. Research and Design. 200;82:457—461.

36. Theofanous T.G. e. a. The Boiling Crisis Phenomenon. Pt. II: Dryout Dynamics and Burnout. Experimental Thermal and Fluid Sci. 2002;26:793—810.

37. Franco A., Latrofa E.M., Yagov V.V. Heat Transfer Enhancement in Pool Boiling of a Refrigerant Fluid with Wire Nets Structures. Exp. Thermal and Fluid Sci. 2006;30:263—275
---
For citation: Sukomel L.A., Yagov V.V. The Possibilities of Increasing Critical Heat Fluxes for Boiling on Surfaces with Porous Coatings (a Review). MPEI Vestnik. 2017; 4: 55—67. (in Russian). DOI: 10.24160/1993-6982-2017-4-55-67.
Published
2019-01-16
Section
Thermal physics and theoretical heat (01.04.14)