The Internet-Based Laboratory “Fundamentals of Electrical Engineering and Electronics” as an Example of a Modern Remotely Accessible Educational Package for Obtaining Open Engineering Education

  • Борис [Boris] Романович [R.] Липай [Lipay]
  • Сергей [Sergey] Ильич [I.] Маслов [Maslov]
Keywords: automated laboratory training workshop, remote access, physical experiment, computer simulation, distance education, fundamentals of electronics, electrical engineering, electric circuits, rectifiers, voltage stabilizers, operational amplifiers

Abstract

The article discusses matters concerned with developing an automated remotely accessed laboratory training workshop with the use of modern information and communication technologies. The experience gained at foreign (the Massachusetts Institute of Technology, the United States; the University of Technology, Sydney, UTS, Australia; and others) and Russian (the Bauman Moscow State Technical University, Moscow; the Siberian Federal University, Krasnoyarsk) universities in this field is analyzed. In particular, the Moscow Power Engineering Institute (MPEI) has long been developing and applying automated laboratory training workshops. MPEI specialists took part in drawing up the national industry standard that describes the requirements for such equipment. The constantly widening use of information technologies in the modern society entails significant changes in the means and methods for training specialists in the field of engineering and technology. It is shown that single sets of equipment can be developed and efficiently used for arranging a large number of labs within the framework of intramural, extramural, and distance education. Access to such sets is available round-the-clock through a computer network. For getting access to the sets, a student only needs to have a connection to the Internet. The article presents the structure of the remotely accessible automated education laboratory workshop. The features of the accomplished development are pointed out. The constructed laboratory equipment is briefly described. It is shown that, with the present level achieved in the development of telecommunication technologies, a shift can be made from producing many copies of the software installed on each user workstation to creating software systems made in the form of web applications. This approach was also used by the authors in creating software for serving remote users of the laboratory package. This software can run on different platforms. The structure of the software and its brief description are given. It is shown that computer simulation of the studied objects is a necessary component of the laboratory package. As a rule, proprietary software systems have the greatest capabilities. Unfortunately, their use in systems for mass education is difficult from both the financial and organizational points of view. For this reason, the considered computer-based package is supplemented with a remote computer simulation subsystem. An example of implementing and applying the described development is given.

Information about authors

Борис [Boris] Романович [R.] Липай [Lipay]

Science degree: Ph.D. (Techn.)

Workplace Electrical Complexes of Self-Contained Objects and Electrical Transport Dept., NRU MPEI

Occupation Assistant Professor

Сергей [Sergey] Ильич [I.] Маслов [Maslov]

Science degree: Dr.Sci. (Techn.)

Workplace Electrical Complexes of Self-Contained Objects and Electrical Transport Dept., NRU MPEI

Occupation professor, Advisor at the Rector's Office

References

1. Arodzero A. World Wide Student Laboratory Project // Los Alamos National Laboratory E-library, Physics №9806044. Feb. 20. 1995. Rev. June 19, 1998.

2. Kazitov M., Nelayev V. Active Virtual Laboratory at Internet as an Effective Tool For Learning // Global Congress on Engineering Education. Cracow. Poland. Sept. 6—11. 1998.

3. Visionary Physicist Uses WWW To Create World-Sized Lab // HellerReports #3552. July 16. 1999.

4. World Wide Student Laboratory // SBIR Grant #0232861. NSF. DMI-0232861. 2003.

5. Hardison J. An Open-Source Export Package for the MIT Microelectronics WebLab // Advanced Undergraduate Project. MIT. June 2002.

6. Lin Y. A Collaboration System and a Graphical Interface for the MIT Microelectronics WebLab // Masters of Engineering Thesis. MIT. June 2002.

7. Nasser P. Remote Microscope for Polymer Crystallization Weblab // Masters of Engineering Thesis. MIT. 2002

8. Zimin A.M. The Role of Automated Remote Assessable Laboratories in a Practical Preparation of Students // Russian Federal State Agency of Education. N.E. Bauman Moscow State Technical University. Moscow. 2006.

9. Подлесный С.А., Сарафанов А.В., Комаров В.А. Концепция типовых решений при построении автоматизированных лабораторных практикумов с удаленным доступом (на примере дисциплин радиотехнических специальностей). Красноярск: ИПЦ КГТУ, 2005.

10. Подлесный С.А. Электронное обучение и обеспечение его качества // Инженерное образование. 2013. Вып. 12. С. 104—111.

11. Арбузов Ю.В., Леньшин В.Н., Свиридов В.Г. Учебный лабораторный практикум в системе дистанционного образования. Проблемы информатизации // Теоретический и научно-практический журнал РАН. 1996. Вып. 3. С. 40—45.

12. Арбузов Ю.В., Леньшин В.Н., Маслов С.И. и др. Новый подход к инженерному образованию. Теория и практика открытого доступа к информационным и техническим ресурсам /А.А. Поляков, ред. М.: Центр-Пресс, 2000.

13. Отраслевой стандарт 9.2—98. Системы автоматизированного лабораторного практикума. Основные положения.
#
1. Arodzero A. World Wide Student Laboratory Project // Los Alamos National Laboratory E-library, Physics #9806044. Feb. 20. 1995. Rev. June 19. 1998.

2. Kazitov M., Nelayev V. Active Virtual Laboratory at Internet as an Effective Tool For Learning // Global Congress on Engineering Education. Cracow. Poland. Sept. 6—11. 1998.

3. Visionary Physicist Uses WWW To Create World-Sized Lab // HellerReports #3552. July 16. 1999.

4. World Wide Student Laboratory // SBIR Grant #0232861. NSF, DMI-0232861, 2003.

5. Hardison J. An Open-Source Export Package for the MIT Microelectronics WebLab // Advanced Undergraduate Project. MIT. June 2002.

6. Lin Y. A Collaboration System and a Graphical Interface for the MIT Microelectronics WebLab // Masters of Engineering Thesis. MIT. June 2002.

7. Nasser P. Remote Microscope for Polymer Crystallization Weblab // Masters of Engineering Thesis. MIT. 2002

8. Zimin A.M. The Role of Automated Remote Assessable Laboratories in a Practical Preparation of Students // Russian Federal State Agency of Education. N.E. Bauman Moscow State Technical University. Moscow. 2006.

9. Podlesnyy S.A., Sarafanov A.V., Komarov V.A. Kontseptsiya Tipovykh Resheniy pri Postroenii Avtomatizirovannykh Laboratornykh Praktikumov s Udalennym Dostupom (na Primere Distsiplin Radiotekhnicheskikh Spetsial'nostey). Krasnoyarsk: IPTS KGTU, 2005. (in Russian).

10. Podlesnyy S.A. Elektronnoe Obuchenie i Obespechenie ego Kachestva // Inzhenernoe Obrazovanie. 2013;12:104—111. (in Russian).

11. Arbuzov Yu.V., Len'shin V.N., Sviridov V.G. Uchebnyy Laboratornyy Praktikum v Sisteme Distantsionnogo Obrazovaniya. Problemy Informatizatsii // Teoreticheskiy i Nauchno-Prakticheskiy Zhurnal RAN. 1996;3:40—45. (in Russian).

12. Arbuzov YU.V., Len'shin V.N., Maslov S.I. i dr. Novyy Podkhod k Inzhenernomu Obrazovaniyu. Teoriya i Praktika Otkrytogo Dostupa k Informatsionnym i Tekhnicheskim Resursam /A.A. Polyakov, Red. M.: Tsentr-Press, 2000. (in Russian).

13. Otraslevoy Standart 9.2—98. Sistemy Avtomatizirovannogo Laboratornogo Praktikuma. Osnovnye Polozheniya. (in Russian).
Published
2019-01-10
Section
Electrical Engineering (05.09.00)