Factors Causing Reduction in the Bearing Capacity of Hydraulic Turbine Structural Elements in the Course of Long-Term Operation

  • Евгения [Evgeniya] Викторовна [V.] Георгиевская [Georgievskaya]
Keywords: hydropower unit, hydraulic turbine, bearing capacity, limiting state, flaw, crack, resonance, runner, fatigue damage, service life

Abstract

Accumulation of fatigue damage is the main mechanism governing the incipience and growth of cracks in the blade system of vertical hydraulic power units both during the running-in period and after long-term operation at the stage of exhausting the equipment service life. However, the causes, location and incipience mechanism, and the crack growth rate at an early stage of operation and beyond the design service life differ significantly from each other. This circumstance does not make it possible to use the experience gained from control of crack formation on the blades of turbine runners, which is successfully applied in the running-in period, to predict the flaw occurrence time and flaw growth rate after a long-term operation. The development of fractures during the running-in period is predominantly due either to the presence of initial flaws and large stress concentrators of geometric or technological origin, or the presence of off-design loads applied on the equipment. During this period, the fracture develops quite quickly and is not repeated after carrying out restorative repair and eliminating its causes. During operation beyond the design service life, fractures develop according to different scenarios: damages accumulate gradually under the effect of relatively low dynamic loads and is accompanied by irreversible changes in the condition of metal. This eventually leads to loss of bearing capacity of a certain hydraulic turbine element. Sometimes, this process can last as long as several decades. The problem of the turbine critical elements’ gradually losing their bearing capacity becomes especially topical on extremely long operation periods when the operating time exceeds 300 000 h, which corresponds to about 40 years of operation. As an illustration, the article outlines the principal factors causing reduction in the bearing capacity of the runner, the main component determining the hydraulic turbine service life, which affects the turbine service life as a whole. All these circumstances, which take into account the individual design and operational features of the hydraulic unit, should be considered in assessing the crack incipience time and their growth rate beyond the design service life.

Information about author

Евгения [Evgeniya] Викторовна [V.] Георгиевская [Georgievskaya]

Science degree: Ph.D. (Phys.-Math.)

Workplace: JSC «I.I. Polzunov Scientific and Development Association on Research and Design of Power Equipment»

Occupation: Head of the Laboratory of Strength of Turbine Thermal Power Plants, Nuclear Power Plants and Hydroelectric Power Station

References

1. ГОСТ 27.002—89. Надежность в технике. Основные понятия. Термины и определения.

2. СТО РусГидро 02.03.77—2011. Гидроэлектростанции. Правила продления срока службы основного оборудования в процессе эксплуатации. Нормы и требования.

3. Коган Ф.Л. Аномальные режимы работы и надежность современных гидроагрегатов // Гидротехническое строительство. 2010. № 4. С. 46—51.

4. Иванченко И.П., Потемкин А.А. Надежность лопастных систем гидротурбин // Энергетическое машиностроение (НИИЭИНФОРМЭНЕРГОМАШ). 1986. № 1.

5. Müller A., Favrel A., Landry C, Yamamoto K, Avellan F. On the Physical Mechanisms Governing Self-Excited Pressure Surge in Francis Turbines // IOP Conference Series: Earth and Environmental Science. 2014. V. 22. No 3. 2014. Рр. 32034—32041.

6. Wouden A.M., Lewis B.J., Cimbala J.M. Wicket Gate Trailing-Edge Blowing: а Method For Improving Off-Design Hydroturbine Performance by Adjusting the Runner Inlet Swirl Angle // IOP Conference Series: Earth and Environmental Science. 2014. V. 22. No 1. Рр. 12021—12031.

7. Amiri K., Mulu B., Raisee M., Cervantes M.J. Load Variation Effects on the Pressure Fluctuations Exerted on a Kaplan Turbine Runner // IOP Conference Series: Earth and Environmental Science. 2014. V. 22. No 3. Рр. 32005—32014.

8. Георгиевская Е.В., Смелков Л.Л. Оценка прочности и остаточного ресурса гидротурбин. Проблемы и пути решения // Гидроэнергетика. 2014. № 3. С. 35—39.
#
1. GOST 27.002—89. Nadezhnost' v tekhnike. Osnovnye Ponyatiya. Terminy i Opredeleniya. (in Russian).

2. STO RusGidro 02.03.77—2011. Gidroelektrostantsii. Pravila Prodleniya Sroka Sluzhby Osnovnogo Oborudovaniya v Protsesse Ekspluatatsii. Normy i Trebovaniya. (in Russian).

3. Kogan F.L. Anomal'nye Rezhimy Raboty i Nadezhnost' Sovremennykh Gidroagregatov. Gidrotekhnicheskoe Stroitel'stvo. 2010;4:46—51. (in Russian).

4. Ivanchenko I.P., Potemkin A.A. Nadezhnost' Lopastnykh Sistem Gidroturbin. Energeticheskoe Mashinostroenie (NIIE Informenergomash);1986;1. (in Russian).

5. Müller A., Favrel A., Landry C, Yamamoto K, Avellan F. On the Physical Mechanisms Governing Self-Excited Pressure Surge in Francis Turbines. IOP Conference Series: Earth and Environmental Science. 2014;22;3:32034—32041.

6. Wouden A.M., Lewis B.J., Cimbala J.M. Wicket Gate Trailing-Edge Blowing: a Method For Improving Off-Design Hydroturbine Performance by Adjusting the Runner Inlet Swirl Angle. IOP Conference Series: Earth and Environmental Science. 2014;22;1:12021—12031.

7. Amiri K., Mulu B., Raisee M., Cervantes M.J. Load Variation Effects on the Pressure Fluctuations Exerted on a Kaplan Turbine Runner. IOP Conference Series: Earth and Environmental Science. 2014;22;3:32005—32014.

8. Georgievskaya E.V., Smelkov L.L. Otsenka Prochnosti i ostatochnogo Resursa Gidroturbin. Problemy i Puti Resheniya. Gidroenergetika. 2014;3:35—39. (in Russian).
Published
2019-01-14
Section
Power Engineering, Metallurgic and Chemical Machinery (05.04.00)