The Mathematical Model of a Motor Generator Set with a Superconducting Excitation Winding

  • Екатерина [Ekaterina] Павловна [P.] Курбатова [Kurbatova]
  • Егор [Egor] Александрович [A.] Кущенко [Kushchenko]
  • Тимофей [Timofey] Александрович [A.] Золотарев [Zolotarev]
  • Павел [Pavel] Александрович [A.] Курбатов [Kurbatov]
Keywords: motor generator set, high-temperature superconductor (HTS), flywheel energy storage, , electromagnetic field calculation, modeling, macromodeling

Abstract

The article presents the results of studies aimed at developing a motor generator set for a flywheel energy storage system (FESS) with a high-temperature superconducting (HTS) field winding. The design considered relates to a type of inductor machines. A distinguishing feature of inductor machines is that their armature and field windings are stationary (fixed). The rotor of such machines is a steel magnetic core with a tooth structure free from windings and permanent magnets. Inductor machines have a number of advantages for FESS applications, namely, a robust and easy-to-manufacture rotor design and brushless excitation, due to which high rotation speeds and high reliability are reached. The article presents the simulation results of a 4.6 kW motor generator set for a nominal rotation speed of 10,000 rpm. A macroscopic model of the motor generator set electromechanical system has been developed, which makes it possible to analyze processes in various operation modes. The model parameters were determined on the basis of numerical analysis results.

Information about authors

Екатерина [Ekaterina] Павловна [P.] Курбатова [Kurbatova]

Ph.D. (Techn.), Assistant Professor of Electromechanics, Electrical and Electronic Apparatuses Dept., NRU MPEI, e-mail: kurbatovaep@mail.ru

Егор [Egor] Александрович [A.] Кущенко [Kushchenko]

Ph.D.-student of Electromechanics, Electrical and Electronic Apparatuses Dept., NRU MPEI, e-mail: KushchenkoYA@gmail.com

Тимофей [Timofey] Александрович [A.] Золотарев [Zolotarev]

Master's Degree in «Electric Power and Electrical Engineering», e-mail: ZolotarevTA@mpei.ru

Павел [Pavel] Александрович [A.] Курбатов [Kurbatov]

(27.03.1949 — 30.08.2023) — Dr.Sci. (Techn.)

References

1. Kumar P., Kumar V. Energy Storage Options for Enhancing the Reliability of Power System in the Presence of Renewable Energy Sources // Proc. II Intern. Conf. Inventive Research in Computing Appl. Coimbatore, 2020. Pp. 1071—1076.
2. Ramakrishnan J., Hashemi S., Træholt C. Assessment of Energy Storage Systems for Multiple Grid Service Provision // Proc. IEEE XIV Intern. Conf. Compatibility, Power Electronics and Power Eng. Setubal, 2020. Pp. 333—339.
3. Nadour M., Essadki A., Nasser T. Power Smoothing Control of DFIG Based Wind Turbine Using Flywheel Energy Storage System // Proc. Intern. Conf. Electrical and Information Technol. Rabat, 2020. Pp. 1—7.
4. Nguyen X.P., Hoang A.T. The Flywheel Energy Storage System: an Effective Solution to Accumulate Renewable Energy // Proc. VI Intern. Conf. Advanced Computing and Communication Syst. Coimbatore, 2020. Pp. 1322—1328.
5. Mouratidis P., Schüßler B., Rinderknecht S. Hybrid Energy Storage System Consisting of a Flywheel and a Lithium-ion Battery for the Provision of Primary Control Reserve // Proc. VIII Intern. Conf. Renewable Energy Research and Appl. Brasov, 2019. Pp. 94—99.
6. Dergachev P., Kosterin A., Kurbatova E., Kurbatov P. Flywheel Energy Storage System with Magnetic HTS Suspension and Embedded in the Flywheel Motor-generator // Proc. IEEE International Power Electronics and Motion Control Conf. Varna, 2016. Pp. 574—579.
7. Murayama M., Kato S., Tsutsui H., Tsuji-Iio S. Magnet Coil Power Supply by a Self-excited Induction Generator with a Flywheel for a Small Tokamak // Fusion Eng. and Design, 2019. V. 148. P. 111270.
8. Li X., Erd N., Binder A. Design and Calculation of a 130 kW High-speed Permanent Magnet Synchronous Machine in Flywheel Energy Storage Systems for Urban Railway Application // Proc. VI Intern. Conf. Clean Electrical Power. 2017. Pp. 452—459.
9. Severson E., Nilssen R., Undeland T., Mohan N. Outer-rotor AC Homopolar Motors for Flywheel Energy Storage // Proc. VII IET Intern. Conf. Power Electronics, Machines and Drives. Manchester, 2014. Pp. 1—6.
10. Bernsmüller E., Rolim L.G.B., Ferreira A.C. External Rotor Switched Reluctance machine for a Kinetic Energy Storage System // Proc. 42nd Annual Conf. IEEE Industrial Electronics Soc. Florence, 2016. Pp. 1636—1641
11. Li W. e. a. Design of a High-speed Superconducting Bearingless Machine for Flywheel Energy Storage Systems // IEEE Trans. on Appl. Superconductivity. 2015. V. 25(3). Pp. 1—4.
12. Tian X., Xu Y., Wei S. Design of a High-speed Homopolar Inductor Machine for Flywheel Energy Storage System // Proc. XXII Intern. Conf. Electrical Machines and Syst. Harbin, 2019. Pp. 1—5.
---
Для цитирования: Курбатова Е.П., Кущенко Е.А., Золотарев Т.А., Курбатов П.А. Разработка математической модели мотор-генератора со сверхпроводниковой обмоткой возбуждения // Вестник МЭИ. 2023. № 6. С. 33—40. DOI: 10.24160/1993-6982-2023-6-33-40
---
Работа выполнена в рамках проекта «Кинетический накопитель энергии со сверхпроводниковым генератором» при поддержке гранта НИУ «МЭИ» на выполнение научно-исследовательских программ «Энергетика», «Электроника, радиотехника и информационные технологии» и «Индустрия 4.0, технологии для промышленности и робототехники в 2020 — 2022 г.»
#
1. Kumar P., Kumar V. Energy Storage Options for Enhancing the Reliability of Power System in the Presence of Renewable Energy Sources. Proc. II Intern. Conf. Inventive Research in Computing Appl. Coimbatore, 2020:1071—1076.
2. Ramakrishnan J., Hashemi S., Træholt C. Assessment of Energy Storage Systems for Multiple Grid Service Provision. Proc. IEEE XIV Intern. Conf. Compatibility, Power Electronics and Power Eng. Setubal, 2020:333—339.
3. Nadour M., Essadki A., Nasser T. Power Smoothing Control of DFIG Based Wind Turbine Using Flywheel Energy Storage System. Proc. Intern. Conf. Electrical and Information Technol. Rabat, 2020:1—7.
4. Nguyen X.P., Hoang A.T. The Flywheel Energy Storage System: an Effective Solution to Accumulate Renewable Energy. Proc. VI Intern. Conf. Advanced Computing and Communication Syst. Coimbatore, 2020:1322—1328.
5. Mouratidis P., Schüßler B., Rinderknecht S. Hybrid Energy Storage System Consisting of a Flywheel and a Lithium-ion Battery for the Provision of Primary Control Reserve. Proc. VIII Intern. Conf. Renewable Energy Research and Appl. Brasov, 2019:94—99.
6. Dergachev P., Kosterin A., Kurbatova E., Kurbatov P. Flywheel Energy Storage System with Magnetic HTS Suspension and Embedded in the Flywheel Motor-generator. Proc. IEEE International Power Electronics and Motion Control Conf. Varna, 2016:574—579.
7. Murayama M., Kato S., Tsutsui H., Tsuji-Iio S. Magnet Coil Power Supply by a Self-excited Induction Generator with a Flywheel for a Small Tokamak. Fusion Eng. and Design, 2019;148:111270.
8. Li X., Erd N., Binder A. Design and Calculation of a 130 kW High-speed Permanent Magnet Synchronous Machine in Flywheel Energy Storage Systems for Urban Railway Application. Proc. VI Intern. Conf. Clean Electrical Power. 2017:452—459.
9. Severson E., Nilssen R., Undeland T., Mohan N. Outer-rotor AC Homopolar Motors for Flywheel Energy Storage. Proc. VII IET Intern. Conf. Power Electronics, Machines and Drives. Manchester, 2014:1—6.
10. Bernsmüller E., Rolim L.G.B., Ferreira A.C. External Rotor Switched Reluctance machine for a Kinetic Energy Storage System. Proc. 42nd Annual Conf. IEEE Industrial Electronics Soc. Florence, 2016:1636—1641
11. Li W. e. a. Design of a High-speed Superconducting Bearingless Machine for Flywheel Energy Storage Systems. IEEE Trans. on Appl. Superconductivity. 2015; 25(3):1—4.
12. Tian X., Xu Y., Wei S. Design of a High-speed Homopolar Inductor Machine for Flywheel Energy Storage System. Proc. XXII Intern. Conf. Electrical Machines and Syst. Harbin, 2019:1—5
---
For citation: Kurbatova E.P., Kushchenko E.A., Zolotarev T.A., Kurbatov P.A. The Mathematical Model of a Motor Generator Set with a Superconducting Excitation Winding. Bulletin of MPEI. 2023;6:33—40. DOI: 10.24160/1993-6982-2023-6-33-40
---
The work is executed within the Framework of the Project «Kinetic Energy Storage with a Superconducting Generator» with the Support of a Grant from the National Research University «MPEI» for the Implementation of Research Programs «Power Engineering», «Electronics, Radio Engineering and Information Technology» and «Industry 4.0, Technologies for Industry and Robotics in 2020 — 2022»
Published
2023-09-05
Section
Electrical Complexes and Systems (2.4.2)